Stainless steel
Stainless steel is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Alternatively, it is known as inox, corrosion-resistant steel, Nirosta or rustless steel. Stainless steel's resistance to corrosion comes from its chromium content of 10.5% or more, which forms a passive film that protects the material and can self-heal when exposed to oxygen. It can be further alloyed with elements like molybdenum, carbon, nickel and nitrogen to enhance specific properties for various applications.
The alloy's properties, such as luster and resistance to corrosion, are useful in many applications. Stainless steel can be rolled into sheets, plates, bars, wire, and tubing. These can be used in cookware, cutlery, surgical instruments, major appliances, vehicles, construction material in large buildings, industrial equipment, and storage tanks and tankers for chemicals and food products. Some grades are also suitable for forging and casting.
The biological cleanability of stainless steel is superior to both copper and aluminium, and comparable to glass. Its cleanability, strength, and corrosion resistance have prompted the use of stainless steel in pharmaceutical and food processing plants.
Different types of stainless steel are labeled with an AISI three-digit number. The ISO 15510 standard lists the chemical compositions of stainless steels of the specifications in existing ISO, ASTM, EN, JIS, and GB standards in a useful interchange table.
Properties
Corrosion resistance
Although stainless steel does rust, this only affects the outer few layers of atoms, its chromium content shielding deeper layers from oxidation.The addition of nitrogen also improves resistance to pitting corrosion and increases mechanical strength. Thus, there are numerous grades of stainless steel with varying chromium and molybdenum contents to suit the environment the alloy must endure. Corrosion resistance can be increased further by the following means:
- increasing chromium content to more than 11%
- adding nickel to at least 8%
- adding molybdenum
Strength
The strongest commonly available stainless steels are precipitation hardening alloys such as 17-4 PH and Custom 465. These can be heat treated to have tensile yield strengths up to.
Melting point
The melting point of stainless steel ranges from, depending on the alloy, which is near that of ordinary steel, and much higher than aluminium or copper.Conductivity
Like steel, stainless steels are relatively poor conductors of electricity, with significantly lower electrical conductivities than copper. In particular, the electrical contact resistance of stainless steel arises as a result of the dense protective oxide layer and limits its functionality in applications as electrical connectors. Copper alloys and nickel-coated connectors tend to exhibit lower ECR values and are preferred materials for such applications. Nevertheless, stainless steel connectors are employed in situations where ECR poses a lower design criterion and corrosion resistance is required, for example in high temperatures and oxidizing environments.Magnetism
, duplex and ferritic stainless steels are magnetic, while austenitic stainless steel is usually non-magnetic. Ferritic steel owes its magnetism to its body-centered cubic crystal structure, in which iron atoms are arranged in cubes and an additional iron atom in the center. This central iron atom is responsible for ferritic steel's magnetic properties. This arrangement also limits the amount of carbon the steel can absorb to around 0.025%. Grades with low coercive field have been developed for electro-valves used in household appliances and for injection systems in internal combustion engines. Some applications require non-magnetic materials, such as magnetic resonance imaging. Austenitic stainless steels, which are usually non-magnetic, can be made slightly magnetic through work hardening. Sometimes, if austenitic steel is bent or cut, magnetism occurs along the edge of the stainless steel because the crystal structure rearranges itself.| EN grade | 1.4307 | 1.4301 | 1.4404 | 1.4435 |
| Magnetic permeability, μ | 1.056 | 1.011 | 1.100 | 1.000 |
Wear
, sometimes called cold welding, is a form of severe adhesive wear, which can occur when two metal surfaces are in relative motion to each other and under heavy pressure. Austenitic stainless steel fasteners are particularly susceptible to thread galling, though other alloys that self-generate a protective oxide surface film, such as aluminum and titanium, are also susceptible. Under high contact-force sliding, this oxide can be deformed, broken, and removed from parts of the component, exposing the bare reactive metal. When the two surfaces are of the same material, these exposed surfaces can easily fuse. Separation of the two surfaces can result in surface tearing and even complete seizure of metal components or fasteners. Galling can be mitigated by the use of dissimilar materials or using different stainless steels. Additionally, threaded joints may be lubricated to provide a film between the two parts and prevent galling. Nitronic 60, made by selective alloying with manganese, silicon, and nitrogen, has demonstrated a reduced tendency to gall.Density
The density of stainless steel ranges from depending on the alloy.History
The invention of stainless steel followed a series of scientific developments, starting in 1798 when chromium was first shown to the French Academy by Louis Vauquelin. In the early 1800s, British scientists James Stoddart, Michael Faraday, and Robert Mallet observed the resistance of chromium-iron alloys to oxidizing agents. Robert Bunsen discovered chromium's resistance to strong acids. The corrosion resistance of iron-chromium alloys may have been first recognized in 1821 by Pierre Berthier, who noted their resistance against attack by some acids and suggested their use in cutlery.In the 1840s, both Britain's Sheffield steelmakers and then Krupp of Germany were producing chromium steel with the latter employing it for cannons in the 1850s. In 1861, Robert Forester Mushet took out a patent on chromium steel in Britain.
These events led to the first American production of chromium-containing steel by J. Baur of the Chrome Steel Works of Brooklyn for the construction of bridges. A US patent for the product was issued in 1869. This was followed with recognition of the corrosion resistance of chromium alloys by Englishmen John T. Woods and John Clark, who noted ranges of chromium from 5–30%, with added tungsten and "medium carbon". They pursued the commercial value of the innovation via a British patent for "Weather-Resistant Alloys".
Scientists researching steel corrosion in the second half of the 19th century didn't pay attention to the amount of carbon in the alloyed steels they were testing until in 1898 Adolphe Carnot and E. Goutal noted that chromium steels better resist to oxidation with acids the less carbon they contain.
Also in the late 1890s, German chemist Hans Goldschmidt developed an aluminothermic process for producing carbon-free chromium. Between 1904 and 1911, several researchers, particularly Leon Guillet of France, prepared alloys that would later be considered stainless steel.
In 1908, the Essen firm Friedrich Krupp Germaniawerft built the 366-ton sailing yacht Germania featuring a chrome-nickel steel hull, in Germany. In 1911, Philip Monnartz reported on the relationship between chromium content and corrosion resistance. On 17 October 1912, Krupp engineers Benno Strauss and Eduard Maurer patented as Nirosta the austenitic stainless steel that became known as 18/8 or AISI type 304.
Similar developments were taking place in the United States, where Christian Dantsizen of General Electric and Frederick Becket at Union Carbide were industrializing ferritic stainless steel. In 1912, Elwood Haynes applied for a US patent on a martensitic stainless steel alloy, which was not granted until 1919.
Harry Brearley
While seeking a corrosion-resistant alloy for gun barrels in 1913, Harry Brearley of the Brown-Firth research laboratory in Sheffield, England, discovered and subsequently industrialized a martensitic stainless steel alloy, later known as AISI type 420. The discovery was announced two years later in a January 1915 newspaper article in The New York Times.The metal was later marketed under the "Staybrite" brand by Firth Vickers in England and was used for the new entrance canopy for the Savoy Hotel in London in 1929. Brearley applied for a US patent during 1915 only to find that Haynes had already registered one. Brearley and Haynes pooled their funding and, with a group of investors, formed the American Stainless Steel Corporation, with headquarters in Pittsburgh, Pennsylvania.
Rustless steel
Brearley initially called his new alloy "rustless steel". The alloy was sold in the US under different brand names like "Allegheny metal" and "Nirosta steel". Even within the metallurgy industry, the name remained unsettled; in 1921, one trade journal called it "unstainable steel".Brearley worked with a local cutlery manufacturer, who gave it the name "stainless steel". As late as 1932, Ford Motor Company continued calling the alloy "rustless steel" in automobile promotional materials. However, stainless tended to predominate worldwide, and even in modern Japan, Western cutlery is simply referred to as "stainless spoon/fork" etc. .
In 1929, before the Great Depression, over 25,000 tons of stainless steel were manufactured and sold in the US annually.
Major technological advances in the 1950s and 1960s allowed the production of large tonnages at an affordable cost:
- AOD process, for the removal of carbon and sulfur
- Continuous casting and hot strip rolling
- The Z-Mill, or Sendzimir cold rolling mill
- The Creusot-Loire Uddeholm and related processes which use steam instead of some or all of the argon