Aquaculture of sea sponges


Sea sponge aquaculture is the process of farming sea sponges under controlled conditions. It has been conducted in the world's oceans for centuries using a number of aquaculture techniques. There are many factors such as light, salinity, pH, dissolved oxygen and the accumulation of waste products that influence the growth rate of sponges. The benefits of sea sponge aquaculture are realised as a result of its ease of establishment, minimum infrastructure requirements and the potential to be used as a source of income for populations living in developing countries. Sea sponges are produced on a commercial scale to be used as bath sponges or to extract biologically active compounds which are found in certain sponge species. Techniques such as the rope and mesh bag method are used to culture sponges independently or within an integrated multi-trophic aquaculture system setting. One of the only true sustainable sea sponges cultivated in the world occur in the region of Micronesia, with a number of growing and production methods used to ensure and maintain the continued sustainability of these farmed species.

History

More than 8000 species of sea sponges live in oceanic and freshwater habitats. Sponge fishing historically has been an important and lucrative industry, with yearly catches from years 1913 to 1938 regularly exceeding 181 tonnes and generating over 1 million U.S. dollars. However, this demand for sea sponges has seen catch rates peak and in 2003 the demand for bath sponges was 2,127 tonnes, with global production from harvesting only meeting a quarter of that amount.
Early aquaculture research into optimizing techniques for sea sponge aquaculture used a number of farming methods. However, commercial sponge farming was met with severe resistance and interference from sponge fishermen, who believed that their continued income was under threat. The opposition by commercial sponge farmers resulted in a low market penetration and poor consumer adoption of aquacultured sponge products.

Benefits

The benefits of commercial sponge aquaculture are apparent for those living in developing countries. In these countries, sponge aquaculture is both an easy and profitable business, which benefits the local community and environment through minimising both harvesting pressure on wild stocks and environmental damage.

Simple

Growing sponges is a simple process and requires little specialist knowledge. Furthermore, the ease of sponge aquaculture means that a whole family can be involved in the production process. This results in a profitable family business which conforms to traditional discourses of "family farms", increasing the likelihood of sea sponge aquaculture adoption. In addition, it is common for sea sponge farms to be located close to family homes allowing for continual access, monitoring, modification and work to be completed on the farm.

Income generation

Sea sponge aquaculture also provides families with a continuous source of income year-round, which can be undertaken as a full-time commitment, or as a part-time job to supplement an existing income.

Uses

Bath sponges

The last two decades have seen a renewed interest in the potential for sponge aquaculture to contribute to supplying the growing global demand for bath sponges. Bath sponges are the most common use of aquacultured sea sponge today. Bath sponges can be defined as any sponge species possessing only spongin fibers – which are springy fibres made from collagen protein.
Commercial uses for bath sponges range from cosmetic, bath, or industrial purposes, with the quality of the sponge based on analysing the quality of the sponge skeleton, with those possessing soft, durable and elastic fibres commanding the highest price.

Bioactive uses

The presence of secondary metabolites produced by symbiotic microorganisms within the sponge, enhances its growth and survival. Thousands of sponge derived secondary metabolites have been successfully isolated from sponges, with many metabolites having potential medicinal properties, such as cytotoxicity, anti-inflammatory and anti-viral activity. Therefore, they have significant potential within the pharmaceutical industry as a means of generating novel drugs. These secondary metabolites, however, are often only present in trace amounts, with the only methods to use these metabolites as therapeutics depending on the scale up of the compounds via chemical synthesis or aquaculture.

Menstrual sponges

While it is still a niche market, a few companies have begun to produce and market small sponges as reusable feminine hygiene products. The sponges are inserted into the vagina in much the same way a tampon is, but when full are removed, cleaned, and reused rather than discarded. The advantages of a reusable tampon alternative include cost-effectiveness and waste reduction. Some women are also concerned by the health risks associated with traditional tampons and feel it is healthier to use a natural material. While no known cases of toxic shock syndrome have been associated with the use of menstrual sponges, sponges are known, when not properly prepared, to contain sand, grit and bacteria, and thus the possibility of toxic shock syndrome should be considered. Sponges have a greater capacity for absorbing menstrual flow than most tampons; though they should still be changed at least every eight hours.

Factors that affect the growth of sponges

Salinity, pH, temperature and light

Sea sponges should be cultured at a salinity of 35ppt. Hypersalinity in the immediate environment surrounding a sponge will dehydrate sponge cells, whereas a hyposaline environment dilutes the intracellular environment of the sponge. The pH of water must match that of seawater in order for sponge production to be maximized.
Sponges are sensitive to temperature, and extreme fluctuations in ambient temperature can negatively affect the health of sea sponges. High temperatures lead to crashes in sponge cultures. Symbiotic bacteria that normally inhabit sea sponges start reproducing at an unsustainable rate when ambient temperature of the water increases by a few degrees. These bacteria then attack and destroy the sponge cells and tissue. It has been suggested that sponges should be cultured at water temperatures slightly below the ambient water temperature in the region the sponge has been originally isolated from.
Photosynthetic endosymbionts inhabit many tropical sponges, and these require light to survive. Certain sponges as a result depend on light availability and intensity to achieve their nutritional needs. In some species however, light may lead to growth inhibition as they are sensitive to ultraviolet radiation. Other than when the sponge has associated photosynthetic bacteria, optimal sea sponge growth occurs in dark conditions.

Dissolved oxygen

is absorbed through the aquiferous system. Oxygen in sea sponges is consumed at rates which range from 0.2–0.25 μmol O2h−1/cm3 of sponge volume.
Demosponges maintained under laboratory conditions can also tolerate hypoxic conditions, for brief periods, which could reflect their adaptability to dissolved oxygen.

Waste removal

In closed culture systems some species of sponge may produce bioactive and cytotoxic metabolites which may rapidly build up and inhibit further sponge growth. However, biofilters are likely to be ineffective at removing secondary metabolites expelled from the sponge. Adsorption methods where biomolecules adhere to an adsorbate are likely to be an effective way of removing these compounds.

Diseases

Bath sponge disease outbreaks are often severe, having the potential to destroy both wild and aquacultured sponge populations. The underlying factors that result in disease outbreaks may be due to causative agents such as viruses, fungi, cyanobacteria and bacterial strains.

Site selection

When choosing a sea sponge aquaculture location, factors that promote growth and survival of the cultured sponge species must be considered. Sponges rely greatly on a passive flow of water to provide food, such as bacteria and microalgae, thus good water flow increases growth and quality of sponges. Higher than normal water flow rates could potentially damage farmed sponges. An ideal location for a sea sponge farm would be in an area that is sheltered, but which receives ample water flow and food availability to optimise sponge growth.

Methods of cultivation

The use of explants

Sponge aquaculture for spongin or metabolite production capitalises on the high regenerative abilities of the totipotent sponge cells by using explants as a means of culturing sponges. Sponges have indeterminate growth, with maximum growth determined through environmental constraints rather than genetics. During the initial establishment of a farm, sponge explants will be chosen by their phenotypic characteristics of fast growth and high quality spongin or metabolites.

Integrated multi-trophic aquaculture

Intensive marine aquaculture in the last decade has increased considerably and resulted in considerable adverse environmental impacts. Large discharge volumes of organic matter from uneaten feed and excretory waste from aquacultured species has resulted in high levels of nutrients within coastal waters. Large quantities of nitrogen excreted from bivalves, salmon and shrimp, enter into the coastal environment, with the potential to develop algal blooms, and reduce dissolved oxygen in the water.
An integrated aquaculture system consists of a number of species at different trophic levels of the food chain. Thus waste generating such as fish and shrimp are coupled with extractive organisms such as abalone, sponges or sea urchins, as a mechanism of removing excess nutrient matter from the water column. Sea sponges have a distinct advantage as an extractive organism in an integrated multi-trophic aquaculture system, as they have the potential of acting as a bioremediator to remove both pathogenic bacteria and organic matter. The sponge Hymeniacidon perlevis has exhibited an excellent ability to remove total organic carbon from seawater under integrated aquaculture conditions, and could be a potentially useful bioremediation tool for aquaculture systems in regions where water pollution is high. Furthermore, the organic enrichment originating from fish farmed in the vicinity may stimulate sponge growth, resulting in more efficient sea sponge aquaculture.