Solar-cell efficiency


Solar-cell efficiency is the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell.
The efficiency of the solar cells used in a photovoltaic system, in combination with latitude and climate, determines the annual energy output of the system. For example, a solar panel with 20% efficiency and an area of 1 m2 produces 200 kWh/yr at Standard Test Conditions if exposed to the Standard Test Condition solar irradiance value of 1000 W/m2 for 2.74 hours a day. Usually solar panels are exposed to sunlight for longer than this in a given day, but the solar irradiance is less than 1000 W/m2 for most of the day. A solar panel can produce more when the Sun is high in Earth's sky and produces less in cloudy conditions, or when the Sun is low in the sky. The Sun is lower in the sky in the winter.
Two location dependent factors that affect solar PV yield are the dispersion and intensity of solar radiation. These two variables can vary greatly between each country. The global regions that have high radiation levels throughout the year are the Middle East, Northern Chile, Australia, China, and Southwestern USA. In a high-yield solar area like central Colorado, which receives annual insolation of 2000 kWh/m2/year, a panel can be expected to produce 400 kWh of energy per year. However, in Michigan, which receives only 1400 kWh/m2/year, annual energy yield drops to 280 kWh for the same panel. At more northerly European latitudes, yields are significantly lower: 175 kWh annual energy yield in southern England under the same conditions.
Several factors affect a cell's conversion efficiency, including its reflectance, thermodynamic efficiency, charge carrier separation efficiency, charge carrier collection efficiency and conduction efficiency values. Because these parameters can be difficult to measure directly, other parameters are measured instead, including quantum efficiency, open-circuit voltage ratio, and. Reflectance losses are accounted for by the quantum efficiency value, as they affect external quantum efficiency. Recombination losses are accounted for by the quantum efficiency, VOC ratio, and fill factor values. Resistive losses are predominantly accounted for by the fill factor value, but also contribute to the quantum efficiency and VOC ratio values.
As of 2024, the world record for solar cell efficiency is 47.6%, set in May 2022 by Fraunhofer ISE, with a III-V four-junction concentrating photovoltaic cell. This beat the previous record of 47.1%, set in 2019 by multi-junction concentrator solar cells developed at National Renewable Energy Laboratory, Golden, Colorado, USA, which was set in lab conditions, under extremely concentrated light. The record in real-world conditions is held by NREL, who developed triple junction cells with a tested efficiency of 39.5%.

Factors affecting energy conversion efficiency

The factors affecting energy conversion efficiency were expounded in a landmark paper by William Shockley and Hans Queisser in 1961. See Shockley–Queisser limit for more detail.

Thermodynamic-efficiency limit and infinite-stack limit

If one has a source of heat at temperature and cooler heat sink at temperature, the maximum theoretically possible value for the ratio of work obtained to heat supplied is, given by a Carnot heat engine. If we take 6000 K for the temperature of the sun and 300 K for ambient conditions on earth, this comes to 95%. In 1981, Alexis de Vos and Herman Pauwels showed that this is achievable with a stack of an infinite number of cells with band gaps ranging from infinity to zero, with a voltage in each cell very close to the open-circuit voltage, equal to 95% of the band gap of that cell, and with 6000 K blackbody radiation coming from all directions. However, the 95% efficiency thereby achieved means that the electric power is 95% of the net amount of light absorbed – the stack emits radiation as it has non-zero temperature, and this radiation must be subtracted from the incoming radiation when calculating the amount of heat being transferred and the efficiency. They also considered the more relevant problem of maximizing the power output for a stack being illuminated from all directions by 6000 K blackbody radiation. In this case, the voltages must be lowered to less than 95% of the band gap. The maximum theoretical efficiency calculated is 86.8% for a stack of an infinite number of cells, using the incoming concentrated sunlight radiation. When the incoming radiation comes only from an area of the sky the size of the sun, the efficiency limit drops to 68.7%.

Ultimate efficiency

Normal photovoltaic systems however have only one p–n junction and are therefore subject to a lower efficiency limit, called the "ultimate efficiency" by Shockley and Queisser. Photons with an energy below the band gap of the absorber material cannot generate an electron-hole pair, so their energy is not converted to useful output, and only generates heat if absorbed. For photons with an energy above the band gap energy, only a fraction of the energy above the band gap can be converted to useful output. When a photon of greater energy is absorbed, the excess energy above the band gap is converted to kinetic energy of the carrier combination. The excess kinetic energy is converted to heat through phonon interactions as the kinetic energy of the carriers slows to equilibrium velocity. Traditional single-junction cells with an optimal band gap for the solar spectrum have a maximum theoretical efficiency of 33.16%, the Shockley–Queisser limit.
Solar cells with multiple band gap absorber materials improve efficiency by dividing the solar spectrum into smaller bins where the thermodynamic efficiency limit is higher for each bin.

Quantum efficiency

When a photon is absorbed by a solar cell it can produce an electron-hole pair. One of the carriers may reach the p–n junction and contribute to the current produced by the solar cell; such a carrier is said to be collected. Or, the carriers recombine with no net contribution to cell current.
Quantum efficiency refers to the percentage of photons that are converted to electric current when the cell is operated under short circuit conditions. The two types of quantum that are usually referred to when talking about solar cells are external and internal. External quantum efficiency relates to the measurable properties of the solar cell. The "external" quantum efficiency of a silicon solar cell includes the effect of optical losses such as transmission and reflection. Measures can be taken to reduce these losses. The reflection losses, which can account for up to 10% of the total incident energy, can be dramatically decreased using a technique called texturization, a light trapping method that modifies the average light path.
The internal quantum efficiency gives insight into the internal material parameters like the absorption coefficient or internal luminescence quantum efficiency. IQE is mainly used to aid the understanding of the potential of a certain material rather than a device.
Quantum efficiency is most usefully expressed as a spectral measurement. Since some wavelengths are absorbed more effectively than others, spectral measurements of quantum efficiency can yield valuable information about the quality of the semiconductor bulk and surfaces.
Quantum efficiency is not the same as overall energy conversion efficiency, as it does not convey information about the fraction of power that is converted by the solar cell.

Maximum power point

A solar cell may operate over a wide range of voltages and currents. By increasing the resistive load on an irradiated cell continuously from zero to a very high value one can determine the maximum power point, the point that maximizes V×I; that is, the load for which the cell can deliver maximum electrical power at that level of irradiation..
The maximum power point of a solar cell is affected by its temperature. Knowing the technical data of certain solar cell, its power output at a certain temperature can be obtained by, where is the power generated at the standard testing condition; is the actual temperature of the solar cell.
A high quality, monocrystalline silicon solar cell, at 25 °C cell temperature, may produce 0.60 V open-circuit. The cell temperature in full sunlight, even with 25 °C air temperature, is probably close to 45 °C, reducing the open-circuit voltage to 0.55 V per cell. The voltage drops modestly, with this type of cell, until the short-circuit current is approached. Maximum power is typically produced with 75% to 80% of the open-circuit voltage and 90% of the short-circuit current. This output can be up to 70% of the VOC x ISC product. The short-circuit current from a cell is nearly proportional to the illumination, while the open-circuit voltage may drop only 10% with an 80% drop in illumination. Lower-quality cells have a more rapid drop in voltage with increasing current and could produce only 1/2 VOC at 1/2 ISC. The usable power output could thus drop from 70% of the VOC x ISC product to 50% or even as little as 25%. Vendors who rate their solar cell "power" only as VOC x ISC, without giving load curves, can be seriously distorting their actual performance.
The maximum power point of a photovoltaic varies with incident illumination. For example, accumulation of dust on photovoltaic panels reduces the maximum power point. Recently, new research to remove dust from solar panels has been developed by utilizing electrostatic cleaning systems. In such systems, an applied electrostatic field at the surface of the solar panels causes the dust particles to move in a "flip-flop" manner. Then, due to gravity and the fact that the solar panels are slightly slanted, the dust particles get pulled downward by gravity. These systems only require a small power consumption and enhance the performance of the solar cells, especially when installed in the desert, where dust accumulation contributes to decreasing the solar panel's performance. Also, for systems large enough to justify the extra expense, a maximum power point tracker tracks the instantaneous power by continually measuring the voltage and current, and uses this information to dynamically adjust the load so the maximum power is always transferred, regardless of the variation in lighting.