Siegel zero
In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, also known as an exceptional zero, named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeros of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near to.
Motivation and definition
The way in which Siegel zeros appear in the theory of Dirichlet L-functions is as potential exceptions to the classical zero-free regions, which can only occur when the L-function is associated to a real Dirichlet character.Real primitive Dirichlet characters
For an integer, a Dirichlet character modulo is an arithmetic function satisfying the following properties:- Completely multiplicative: for every, ;
- Periodic: for every ;
- Support: if and only if.
The trivial character is the character modulo 1, and the principal character modulo, denoted, is the lifting of the trivial homomorphism.
A character is called imprimitive if there exists some integer with such that the induced homomorphism factors as
for some character ; otherwise, is called primitive.
A character is real if it equals its complex conjugate , or equivalently if. The real primitive Dirichlet characters are in one-to-one correspondence with the Kronecker symbols for a fundamental discriminant. One way to define is as the completely multiplicative arithmetic function determined by :
It is thus common to write, which are real primitive characters modulo.
Classical zero-free regions
The Dirichlet L-function associated to a character is defined as the analytic continuation of the Dirichlet series defined for, where s is a complex variable. For non-principal, this continuation is entire; otherwise it has a simple pole of residue at as its only singularity. For, Dirichlet L-functions can be expanded into an Euler product, from where it follows that has no zeros in this region. The prime number theorem for arithmetic progressions is equivalent to . Moreover, via the functional equation, we can reflect these regions through to conclude that, with the exception of negative integers of same parity as, all the other zeros of must lie inside. This region is called the critical strip, and zeros in this region are called non-trivial zeros.The classical theorem on zero-free regions states that there exists an
effectively computable real number such that, writing for the complex variable, the function has no zeros in the region
if is non-real. If is real, then there is at most one zero in this region, which must necessarily be real and simple. This possible zero is the so-called Siegel zero.
The generalized Riemann hypothesis claims that for every, all the non-trivial zeros of lie on the line.
Defining "Siegel zeros"
The definition of Siegel zeros as presented ties it to the constant in the zero-free region. This often makes it tricky to deal with these objects, since in many situations the particular value of the constant is of little concern. Hence, it is usual to work with more definite statements, either asserting or denying, the existence of an infinite family of such zeros, such as in:- Conjecture : If denotes the largest real zero of, then
The equivalence can be deduced for example by using the zero-free regions and classical estimates for the number of non-trivial zeros of up to a certain height.
Landau–Siegel estimates
The first breakthrough in dealing with these zeros came from Landau, who showed that there exists an effectively computable constant such that, for any and real primitive characters to distinct moduli, if are real zeros of respectively, thenThis is saying that, if Siegel zeros exist, then they cannot be too numerous. The way this is proved is via a 'twisting' argument, which lifts the problem to the Dedekind zeta function of the biquadratic field. This technique is still largely applied in modern works.
This 'repelling effect', after more careful analysis, led Landau to his 1936 theorem, which states that for every, there is such that, if is a real zero of, then. However, in the same year, in the same issue of the same journal, Siegel directly improved this estimate to
Both Landau's and Siegel's proofs provide no explicit way to calculate, thus being instances of an ineffective result.
Siegel–Tatsuzawa theorem
In 1951, Tikao Tatsuzawa proved an 'almost' effective version of Siegel's theorem, showing that for any fixed, if thenwith the possible exception of at most one fundamental discriminant. Using the 'almost effectivity' of this result, P. J. Weinberger showed that Euler's list of 65 idoneal numbers is complete except for at most two elements.
Relation to quadratic fields
Siegel zeros often appear as more than an artificial issue in the argument for deducing zero-free regions, since zero-free region estimates enjoy deep connections to the arithmetic of quadratic fields. For instance, the identity can be interpreted as an analytic formulation of quadratic reciprocity. The precise relation between the distribution of zeros near and arithmetic comes from Dirichlet's class number formula:where:
- is the ideal class number of ;
- is the number of roots of unity in ;
- is the fundamental unit of .
Siegel zeros as 'quadratic phenomena'
There is a sense in which the difficulty associated to the phenomenon of Siegel zeros in general is entirely restricted to quadratic extensions. It is a consequence of the Kronecker–Weber theorem, for example, that the Dedekind zeta function of an abelian number field can be written as a product of Dirichlet L-functions. Thus, if has a Siegel zero, there must be some subfield with such that has a Siegel zero.While for the non-abelian case can only be factored into more complicated Artin L-functions, the same is true:
- Theorem '.' Let be a number field of degree. There is a constant such that, if there is a real in the range
"No Siegel zeros" for ''D'' < 0
Lower bounds for ''h''(''D'')
In 1918, Erich Hecke showed that "no Siegel zeros" for implies that . This can be extended to an equivalence, as it is a consequence of Theorem 3 in Granville–Stark :where the summation runs over the reduced binary quadratic forms of discriminant. Using this, Granville and Stark showed that a certain uniform formulation of the abc conjecture for number fields implies "no Siegel zeros" for negative discriminants.
In 1976, Dorian Goldfeld proved the following unconditional, effective lower bound for :
Complex multiplication
Another equivalence for "no Siegel zeros" for can be given in terms of upper bounds for heights of singular moduli:where:
- is the absolute logarithmic naïve height for number fields;
- is the j-invariant function;
- .
A precise relation between heights and values of L-functions was obtained by Pierre Colmez, who showed that, for an elliptic curve with complex multiplication by, we have
where denotes the Faltings height. Using the identities and, Colmez' theorem also provides a proof for the equivalence above.
Consequences of Siegel zeros existing
Although the generalized Riemann hypothesis is expected to be true, since the "no Siegel zeros" conjecture remains open, it is interesting to study what consequences such severe counterexamples to the GRH would imply. Another reason to study this possibility is that the proof of certain unconditional theorems require the division into two cases: first a proof assuming no Siegel zeros exist, then another assuming Siegel zeros do exist. A classical theorem of this type is Linnik's theorem on the smallest prime in an arithmetic progression.The following are some examples of facts that follow from the existence of Siegel zeros.
Infinitude of twin primes
A striking result in this direction is Roger Heath-Brown's 1983 result which, following Terence Tao, can be stated as follows:- Theorem '. At least one of the following is true: ' There are no Siegel zeros. There are infinitely many twin primes.
Parity problem