Bilinear map
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example.
A bilinear map can also be defined for modules. For that, see the article pairing.
Definition
Vector spaces
Let and be three vector spaces over the same base field. A bilinear map is a functionsuch that for all, the map
is a linear map from to and for all, the map
is a linear map from to In other words, when we hold the second entry of the bilinear map fixed while letting the first entry vary, yielding, the result is a linear operator, and similarly for when we hold the first entry fixed.
Such a map satisfies the following properties.
If and we have for all then we say that B is symmetric. If X is the base field F, then the map is called a bilinear form, which are well-studied.
Modules
The definition works without any changes if instead of vector spaces over a field F, we use modules over a commutative ring R. It generalizes to n-ary functions, where the proper term is multilinear.For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a map with T an -bimodule, and for which any n in N, is an R-module homomorphism, and for any m in M, is an S-module homomorphism. This satisfies
for all m in M, n in N, r in R and s in S, as well as B being additive in each argument.
Properties
An immediate consequence of the definition is that whenever or. This may be seen by writing the zero vector 0V as and moving the scalar 0 "outside", in front of B, by linearity.The set of all bilinear maps is a linear subspace of the space of all maps from into X.
If V, W, X are finite-dimensional, then so is. For that is, bilinear forms, the dimension of this space is . To see this, choose a basis for V and W; then each bilinear map can be uniquely represented by the matrix, and vice versa.
Now, if X is a space of higher dimension, we obviously have.
Examples
- Matrix multiplication is a bilinear map.
- If a vector space V over the real numbers carries an inner product, then the inner product is a bilinear map
- In general, for a vector space V over a field F, a bilinear form on V is the same as a bilinear map.
- If V is a vector space with dual space V∗, then the canonical evaluation map, is a bilinear map from to the base field.
- Let V and W be vector spaces over the same base field F. If f is a member of V∗ and g a member of W∗, then defines a bilinear map.
- The cross product in is a bilinear map
- Let be a bilinear map, and be a linear map, then is a bilinear map on.
Continuity and separate continuity
Then b is said to be if the following two conditions hold:
- for all the map given by is continuous;
- for all the map given by is continuous.
All continuous bilinear maps are hypocontinuous.
Sufficient conditions for continuity
Many bilinear maps that occur in practice are separately continuous but not all are continuous.We list here sufficient conditions for a separately continuous bilinear map to be continuous.
- If X is a Baire space and Y is metrizable then every separately continuous bilinear map is continuous.
- If are the strong duals of Fréchet spaces then every separately continuous bilinear map is continuous.
- If a bilinear map is continuous at then it is continuous everywhere.
Composition map
In general, the bilinear map is not continuous.
We do, however, have the following results:
Give all three spaces of linear maps one of the following topologies:
- give all three the topology of bounded convergence;
- give all three the topology of compact convergence;
- give all three the topology of pointwise convergence.
- If is an equicontinuous subset of then the restriction is continuous for all three topologies.
- If is a barreled space then for every sequence converging to in and every sequence converging to in the sequence converges to in