School bus


A school bus is any type of bus owned, leased, contracted to, or operated by a school or school district. It is regularly used to transport students to and from school or school-related activities, but not including a charter bus or transit bus. Various configurations of school buses are used worldwide; the most iconic examples are the yellow school buses of the United States which are also found in other parts of the world.
In North America, school buses are purpose-built vehicles distinguished from other types of buses by design characteristics mandated by federal and state/provincial regulations. In addition to their distinct paint color , school buses are fitted with exterior warning lights and multiple safety devices.

Design history

19th century

In the second half of the 19th century, many rural areas of the United States and Canada were served by one-room schools. For those students who lived beyond practical walking distance from school, transportation was facilitated in the form of the kid hack; at the time, "hack" was a term referring to certain types of horse-drawn carriages. Essentially re-purposed farm wagons, kid hacks were open to the elements, with little to no weather protection.
In 1892, Indiana-based Wayne Works produced its first "school car" A purpose-built design, the school car was constructed with perimeter-mounted wooden bench seats and a roof. As a horse-drawn wagon, the school car was fitted with a rear entrance door ; over a century later, the design remains in use.
In 1869, Massachusetts became the first state to add transportation to public education; by 1900, 16 other states would transport students to school.

1900–1930

Following the first decade of the twentieth century, several developments would affect the design of the school bus and student transport. As vehicles evolved from horse-drawn to "horseless" propulsion on a wider basis, the wagon bodies of kid hacks and school cars were adapted to truck frames. While transitioning into purpose-built designs, a number of features from wagons were retained, including wood construction, perimeter bench seating, and rear entry doors. Weather protection remained minimal; some designs adopted a tarpaulin stretched above the passenger seating.
In 1915, International Harvester constructed its first school bus; today, its successor company Navistar still produces school bus cowled chassis.
In 1919, the usage of school buses became funded in all 48 US states.
In 1927, Ford dealership owner A.L. Luce produced a bus body for a 1927 Ford Model T. The forerunner of the first Blue Bird school buses, steel was used to panel and frame the bus body; wood was relegated to a secondary material. While fitted with a roof, the primary weather protection of the Luce bus design included roll-up canvas side curtains.

1930s

During the 1930s, school buses saw advances in their design and production that remain in use to this day. To better adapt automotive chassis design, school bus entry doors were moved from the rear to the front curbside, becoming a door operated by the driver. The rear entry door of the kid hacks were re-purposed as an emergency exit.
Following the introduction of the steel-paneled 1927 Luce bus, school bus manufacturing began to transition towards all-steel construction. In 1930, both Superior and Wayne introduced all-steel school buses; the latter introduced safety glass windows for its bus body.
As school bus design paralleled the design of light to medium-duty commercial trucks of the time, the advent of forward-control trucks would have their own influence on school bus design. In an effort to gain extra seating capacity and visibility, Crown Coach built its own cabover school bus design from the ground up. Introduced in 1932, the Crown Supercoach seated up to 76 passengers, the highest-capacity school bus of the time.
As the 1930s progressed, flat-front school buses began to follow motorcoach design in styling as well as engineering, gradually adopting the term "transit-style" for their appearance. In 1940, the first mid-engined transit school bus was produced by Gillig in California.

Developing production standards

The custom-built nature of school buses created an inherent obstacle to their profitable mass production on a large scale. Although school bus design had moved away from the wagon-style kid hacks of the generation before, there was not yet a recognized set of industry-wide standards for school buses.
In 1939, rural education expert Dr. Frank W. Cyr organized a week-long conference at Teachers College, Columbia University that introduced new standards for the design of school buses. Funded by a $5,000 grant, Dr. Cyr invited transportation officials, representatives from body and chassis manufacturers, and paint companies. To reduce the complexity of school bus production and increase safety, a set of 44 standards were agreed upon and adopted by the attendees. To allow for large-scale production of school buses among body manufacturers, adoption of these standards allowed for greater consistency among body manufacturers.
While many of the standards of the 1939 conference have been modified or updated, one part of its legacy remains a key part of every school bus in North America today: the adoption of a standard paint color for all school buses. While technically named "National School Bus Glossy Yellow", school bus yellow was adopted for use since it was considered easiest to see in dawn and dusk, and it contrasted well with black lettering. While not universally used worldwide, yellow has become the shade most commonly associated with school buses both in North America and abroad.

1940s

During WWII school bus manufacturers converted to military production, manufacturing buses and license-built trucks for the military. Following the war, school bus operation would see a number of changes, following developments within education systems.
Following WWII and the rise of suburban growth in North America, demand for school busing increased outside of rural areas; in suburbs and larger urban areas, community design often made walking to school impractical beyond a certain distance from home. In all but the most isolated areas, one-room schools from the turn of the century had become phased out in favor of multi-grade schools introduced in urban areas. In another change, school districts shifted bus operation from buses operated by single individuals to district-owned fleets.

1950s–1960s

From 1950 to 1982, the baby boomer generation was either in elementary or high school, leading to a significant increase in student populations across North America; this would be a factor that would directly influence school bus production for over three decades.
During the 1950s, as student populations began to grow, larger school buses began to enter production. To increase seating capacity, manufacturers began to produce bodies on heavier-duty truck chassis; transit-style school buses also grew in size. In 1954, the first diesel-engined school bus was introduced, with the first tandem-axle school bus in 1955.
To improve accessibility, at the end of the 1950s, manufacturers developed a curbside wheelchair lift option to transport wheelchair-using passengers. In modified form, the design remains in use today.
During the 1950s and 1960s, manufacturers also began to develop designs for small school buses, optimized for urban routes with crowded, narrow streets along with rural routes too isolated for a full-size bus. For this role, manufacturers initially began the use of yellow-painted utility vehicles such as the International Travelall and Chevrolet Suburban. As another alternative, manufacturers began use of passenger vans, such as the Chevrolet Van/GMC Handi-Van, Dodge A100, and Ford Econoline; along with yellow paint, these vehicles were fitted with red warning lights. While more maneuverable, automotive-based school buses did not offer the reinforced passenger compartment of a full-size school bus.

Structural integrity

During the 1960s, as with standard passenger cars, concerns began to arise for passenger protection in catastrophic traffic collisions. At the time, the weak point of the body structure was the body joints; where panels and pieces were riveted together, joints could break apart in major accidents, with the bus body causing harm to passengers.
After subjecting a bus to a rollover test in 1964, in 1969, Ward Body Works pointing that fasteners had a direct effect on joint quality. In its own research, Wayne Corporation discovered that the body joints were the weak points themselves. In 1973, to reduce the risk of body panel separation, Wayne introduced the Wayne Lifeguard, a school bus body with single-piece body side and roof stampings. While single-piece stampings seen in the Lifeguard had their own manufacturing challenges, school buses of today use relatively few side panels to minimize body joints.

1970s

During the 1970s, school buses would undergo a number of design upgrades related to safety. While many changes were related to protecting passengers, others were intended to minimize the chances of traffic collisions. To decrease confusion over traffic priority, federal and state regulations were amended, requiring for many states/provinces to add amber warning lamps inboard of the red warning lamps. Similar to a yellow traffic light, the amber lights are activated before stopping, indicating to drivers that a school bus is about to stop and unload/load students. Adopted by a number of states during the mid-1970s, amber warning lights became nearly universal equipment on new school buses by the end of the 1980s. To supplement the additional warning lights and to help prevent drivers from passing a stopped school bus, a stop arm was added to nearly all school buses; connected to the wiring of the warning lights, the deployable stop arm extended during a bus stop with its own set of red flashing lights.
In the 1970s, school busing expanded further, under controversial reasons; a number of larger cities began to bus students in an effort to racially integrate schools. Out of necessity, the additional usage created further demand for bus production.