Saturn (rocket family)
The Saturn family of American rockets was developed by a team led by Wernher von Braun and other former Peenemünde employees to launch heavy payloads to Earth orbit and beyond. The Saturn family used liquid hydrogen as fuel in the upper stages. Originally proposed as a military satellite launcher, they were adopted as the launch vehicles for the Apollo Moon program. Three versions were built and flown: the medium-lift Saturn I, the heavy-lift Saturn IB, and the super heavy-lift Saturn V.
Von Braun proposed the Saturn name in October 1958 as a logical successor to the Jupiter series as well as the Roman god's powerful position.
In 1963, President John F. Kennedy identified the Saturn I SA-5 launch as being the point where US lift capability would surpass the Soviets, after having been behind since Sputnik. He last mentioned this in a speech given at Brooks Air Force Base in San Antonio on the day before he was assassinated.
To date, the Saturn V is the only launch vehicle from the Apollo Space Program to transport human beings beyond low Earth orbit. A total of 24 humans were flown to the Moon in the four years spanning December 1968 through December 1972. No Saturn rocket failed catastrophically in flight, except on the pad during the Apollo 1 test flight, when a fire ignited in the crew module, burning alive and killing all the astronauts.
Summary of variants
All the Saturn family rockets are listed here by date of introduction.History
Early development
In the early 1950s, the US Navy and US Army actively developed long-range missiles with the help of German rocket engineers who were involved in developing the successful V-2 during the Second World War. These missiles included the Navy's Viking, and the Army's Corporal, Jupiter and Redstone. Meanwhile, the US Air Force developed its Atlas and Titan missiles, relying more on American engineers.Infighting among the various branches was constant, with the United States Department of Defense deciding which projects to fund for development. On November 26, 1956, Defense Secretary Charles E. Wilson issued a memorandum stripping the Army of offensive missiles with a range of or greater, and turning their Jupiter missiles over to the Air Force. From that point on, the Air Force would be the primary missile developer, especially for dual-use missiles that could also be used as space launch vehicles.
In late 1956, the Department of Defense released a requirement for a heavy-lift vehicle to orbit a new class of communications and "other" satellites. The requirements, drawn up by the then-unofficial Advanced Research Projects Agency, called for a vehicle capable of putting 9,000 to 18,000 kilograms into orbit, or accelerating 2,700 to 5,400 kg to escape velocity.
Since the Wilson memorandum covered only weapons, not space vehicles, the Army Ballistic Missile Agency saw this as a way to continue the development of their own large-rocket projects. In April 1957, von Braun directed Heinz-Hermann Koelle, chief of the Future Projects design branch, to study dedicated launch vehicle designs that could be built as quickly as possible. Koelle evaluated a variety of designs for missile-derived launchers that could place a maximum of about 1,400 kg in orbit, but might be expanded to as much as 4,500 kg with new high-energy upper stages. In any event, these upper stages would not be available until 1961 or 1962 at the earliest, and the launchers would still not meet the DoD requirements for heavy loads.
In order to fill the projected need for loads of 10,000 kg or greater, the ABMA team calculated that a booster with a thrust of about thrust would be needed, far greater than any existing or planned missile. For this role they proposed using a number of existing missiles clustered together to produce a single larger booster; using existing designs they looked at combining tankage from one Jupiter as a central core, with eight Redstone diameter tanks attached to it. This relatively cheap configuration allowed existing fabrication and design facilities to be used to produce this "quick and dirty" design.
Two approaches to building the Super-Jupiter were considered; the first used multiple engines to reach the mark, the second used a single much larger engine. Both approaches had their own advantages and disadvantages. Building a smaller engine for clustered use would be a relatively low-risk path from existing systems, but required duplication of systems and made the possibility of a stage failure much higher. A single larger engine would be more reliable, and would offer higher performance because it eliminated duplication of "dead weight" like propellant plumbing and hydraulics for steering the engines. On the downside, an engine of this size had never been built before and development would be expensive and risky. The Air Force had recently expressed an interest in such an engine, which would develop into the famed F-1, but at the time they were aiming for and the engines would not be ready until the mid-1960s. The engine-cluster appeared to be the only way to meet the requirements on time and budget.
Super-Jupiter was the first-stage booster only; to place payloads in orbit, additional upper stages would be needed. ABMA proposed using either the Titan or Atlas as a second stage, optionally with the new Centaur upper-stage. The Centaur had been proposed by General Dynamics as an upper stage for the Atlas in order to quickly produce a launcher capable of placing loads up to into low Earth orbit. The Centaur was based on the same "balloon tank" concept as the Atlas, and built on the same jigs at the same diameter. As the Titan was deliberately built at the same size as well, this meant the Centaur could be used with either missile. Given that the Atlas was the higher priority of the two ICBM projects and its production was fully accounted for, ABMA focused on "backup" design, Titan, although they proposed extending it in length in order to carry additional fuel.
In December 1957, ABMA delivered Proposal: A National Integrated Missile and Space Vehicle Development Program to the DoD, detailing their clustered approach. They proposed a booster consisting of a Jupiter missile airframe surrounded by eight Redstones acting as tankage, a thrust plate at the bottom, and four Rocketdyne E-1 engines, each having of thrust. The ABMA team also left the design open to future expansion with a single engine, which would require relatively minor changes to the design. The upper stage was the lengthened Titan, with the Centaur on top. The result was a very tall and skinny rocket, quite different from the Saturn that eventually emerged.
Specific uses were forecast for each of the military services, including navigation satellites for the Navy; reconnaissance, communications, and meteorological satellites for the Army and Air Force; support for Air Force crewed missions; and surface-to-surface logistics supply for the Army at distances up to 6400 km. Development and testing of the lower stage stack were projected to be completed by 1963, about the same time that the Centaur should become available for testing in combination. The total development cost of $850 million during the years 1958-1963 covered 30 research and development flights.
Sputnik stuns the world
While the Super-Jupiter program was being drawn up, preparations were underway for the first satellite launch as the US contribution to the International Geophysical Year in 1957. For complex political reasons, the program had been given to the US Navy under Project Vanguard. The Vanguard launcher consisted of a Viking lower stage combined with new uppers adapted from sounding rockets. ABMA provided valuable support on Viking and Vanguard, both with their first-hand knowledge of the V-2, as well as developing its guidance system. The first three Vanguard suborbital test flights had gone off without a hitch, starting in December 1956, and a launch was planned for late 1957.On October 4, 1957, the Soviet Union surprised the world with the launch of Sputnik I. Although there had been some indications that the Soviets were working towards this goal, few in the U.S. military and scientific establishment considered these efforts seriously.
When asked in November 1954 about the possibility of the Soviets launching a satellite, Defense Secretary Wilson replied: "I wouldn't care if they did." The public did not see it the same way, however, and the event was a major public relations disaster for the US. Vanguard was planned to launch shortly after Sputnik, but a series of delays pushed this into December, when the rocket exploded in spectacular fashion. The press was harsh, referring to the project as "Kaputnik" or "Project Rearguard". As Time magazine noted at the time:
Von Braun responded to Sputnik I's launch by claiming he could have a satellite in orbit within 90 days of being given a go-ahead. His plan was to combine the existing Jupiter C rocket with the solid-fuel engines from the Vanguard, producing the Juno I. There was no immediate response while everyone waited for Vanguard to launch, but the continued delays in Vanguard and the November launch of Sputnik II resulted in the go-ahead being given that month. Von Braun kept his promise with the successful launch of Explorer I on 1 February 1958. Vanguard was finally successful on March 17, 1958.
ARPA selects Juno
Concerned that the Soviets continued to surprise the U.S. with technologies that seemed beyond their capabilities, the DoD studied the problem and concluded that it was primarily bureaucratic. As all of the branches of the military had their own research and development programs, there was considerable duplication and inter-service fighting for resources. Making matters worse, the DoD imposed its own Byzantine procurement and contracting rules, adding considerable overhead. To address these concerns, the DoD initiated the formation of a new research and development group focused on launch vehicles and given wide discretionary powers that cut across traditional Army/Navy/Air Force lines. The group was given the job of catching up to the Soviets in space technology as quickly as possible, using whatever technology it could, regardless of the origin. Formalized as Advanced Research Projects Agency on February 7, 1958, the group examined the DoD launcher requirements and compared the various approaches that were currently available.At the same time that ABMA was drawing up the Super-Jupiter proposal, the Air Force was in the midst of working on their Titan C concept. The Air Force had gained valuable experience working with liquid hydrogen on the Lockheed CL-400 Suntan spy plane project and felt confident in their ability to use this volatile fuel for rockets. They had already accepted Krafft Ehricke's arguments that hydrogen was the only practical fuel for upper stages, and started the Centaur project based on the strength of these arguments. Titan C was a hydrogen-burning intermediate stage that would normally sit between the Titan lower and Centaur upper, or could be used without the Centaur for low-Earth orbit missiles like Dyna-Soar. However, as hydrogen is much less dense than "traditional" fuels then in use, especially kerosene, the upper stage would have to be fairly large in order to hold enough fuel. As the Atlas and Titan were both built at 120" diameters it would make sense to build Titan C at this diameter as well, but this would result in an unwieldy tall and skinny rocket with dubious strength and stability. Instead, Titan C proposed building the new stage at a larger 160" diameter, meaning it would be an entirely new rocket.
In comparison, the Super-Jupiter design was based on off-the-shelf components, with the exception of the E-1 engines. Although it too relied on the Centaur for high-altitude missions, the rocket was usable for low-Earth orbit without Centaur, which offered some flexibility in case Centaur ran into problems. ARPA agreed that the Juno proposal was more likely to meet the timeframes required, although they felt that there was no strong reason to use the E-1, and recommended a lower-risk approach here as well. ABMA responded with a new design, the Juno V, which replaced the four E-1 engines with eight H-1s, a much more modest upgrade of the existing S-3D already used on the Thor and Jupiter missiles, raising thrust from 150,000 to 188,000 lbf. It was estimated that this approach would save as much as $60 million in development and cut as much as two years of R&D time.
Happy with the results of the redesign, on August 15, 1958, ARPA issued Order Number 14-59 that called on ABMA to:
This was followed on September 11, 1958, with another contract with Rocketdyne to start work on the H-1. On September 23, 1958, ARPA and the Army Ordnance Missile Command drew up an additional agreement enlarging the scope of the program, stating "In addition to the captive dynamic firing..., it is hereby agreed that this program should now be extended to provide for a propulsion flight test of this booster by approximately September 1960". Further, they wanted ABMA to produce three additional boosters, the last two of which would be "capable of placing limited payloads in orbit."
By this point, many in the ABMA group were already referring to the design as Saturn, as von Braun explained it as a reference to the planet after Jupiter. The name change became official in February 1959.