Satellite constellation


A satellite constellation is a group of artificial satellites working together as a system. Unlike a single satellite, a constellation can provide permanent global or near-global coverage, such that at any time everywhere on Earth at least one satellite is visible. Satellites are typically placed in sets of complementary orbital planes and connect to globally distributed ground stations. They may also use inter-satellite communication.

Other satellite groups

Satellite constellations should not be confused with:
  • satellite clusters, which are groups of satellites moving very close together in almost identical orbits ;
  • satellite series or satellite programs, which are generations of satellites launched in succession;
  • satellite fleets, which are groups of satellites from the same manufacturer or operator that function independently from each other.

    Overview

Satellites in medium Earth orbit and low Earth orbit are often deployed in satellite constellations, because the coverage area provided by a single satellite only covers a small area that moves as the satellite travels at the high angular velocity needed to maintain its orbit. Many MEO or LEO satellites are needed to maintain continuous coverage over an area. This contrasts with geostationary satellites, where a single satellite, at a much higher altitude and moving at the same angular velocity as the rotation of the Earth's surface, provides permanent coverage over a large area.
For some applications, in particular digital connectivity, the lower altitude of MEO and LEO satellite constellations provide advantages over a geostationary satellite, with lower path losses and latency. The propagation delay for a round-trip internet protocol transmission via a geostationary satellite can be over 600ms, but as low as 125ms for a MEO satellite or 30ms for a LEO system.
Examples of satellite constellations include the Global Positioning System, Galileo and GLONASS constellations for navigation and geodesy in MEO, the Iridium and Globalstar satellite telephony services and Orbcomm messaging service in LEO, the Disaster Monitoring Constellation and RapidEye for remote sensing in Sun-synchronous LEO, Russian Molniya and Tundra communications constellations in highly elliptic orbit, and satellite broadband constellations, under construction from Starlink and OneWeb in LEO, and operational from O3b in MEO.

Design

Walker Constellation

There are a large number of constellations that may satisfy a particular mission. Usually constellations are designed so that the satellites have similar orbits, eccentricity and inclination so that any perturbations affect each satellite in approximately the same way. In this way, the geometry can be preserved without excessive station-keeping thereby reducing the fuel usage and hence increasing the life of the satellites. Another consideration is that the phasing of each satellite in an orbital plane maintains sufficient separation to avoid collisions or interference at orbit plane intersections.
A class of circular orbit geometries that has become popular is the Walker Delta Pattern constellation.
This has an associated notation to describe it which was proposed by John Walker. His notation is:
where:
  • i is the inclination;
  • t is the total number of satellites;
  • p is the number of equally spaced planes; and
  • f is the relative spacing between satellites in adjacent planes. The change in true anomaly for equivalent satellites in neighbouring planes is equal to f × 360 / t.
For example, the Galileo navigation system is a Walker Delta 56°:24/3/1 constellation. This means there are 24 satellites in 3 planes inclined at 56 degrees, spanning the 360 degrees around the equator. The "1" defines the phasing between the planes, and how they are spaced. The Walker Delta is also known as the Ballard rosette, after A. H. Ballard's similar earlier work. Ballard's notation is where m is a multiple of the fractional offset between planes.
Another popular constellation type is the near-polar Walker Star, which is used by Iridium. Here, the satellites are in near-polar circular orbits across approximately 180 degrees, travelling north on one side of the Earth, and south on the other. The active satellites in the full Iridium constellation form a Walker Star of 86.4°:66/6/2, i.e. the phasing repeats every two planes. Walker uses similar notation for stars and deltas, which can be confusing.
These sets of circular orbits at constant altitude are sometimes referred to as orbital shells.

Orbital shell

In spaceflight, an orbital shell is a set of artificial satellites in circular orbits at a certain fixed altitude. In the design of satellite constellations, an orbital shell usually refers to a collection of circular orbits with the same altitude and, oftentimes, orbital inclination,
distributed evenly in celestial longitude.
For a sufficiently high inclination and altitude the orbital shell covers the entire orbited body. In other cases the coverage extends up to a certain maximum latitude.
Several existing satellite constellations typically use a single orbital shell. New large megaconstellations have been proposed that consist of multiple orbital shells.

List of satellite constellations

Navigational satellite constellations

NameOperatorSatellites and orbits
CoverageServicesStatusYears in service
Global Positioning System USSF24 in 6 planes at 20,180 km GlobalNavigationOperational1993–present
GLONASSRoscosmos24 in 3 planes at 19,130 km GlobalNavigationOperational1995–present
GalileoEUSPA, ESA24 in 3 planes at 23,222 km GlobalNavigationOperational2019–present
BeiDouCNSAGlobalNavigationOperational
NAVICISRORegionalNavigationOperational2018–present
QZSSJAXARegionalNavigationOperational2018–present

Communications satellite constellations

Broadcasting

  • Sirius Satellite Radio until 2013
  • XM Satellite Radio until 2011
  • SES
  • Othernet
  • Molniya

    Monitoring

  • Spire
  • Iridium
  • Myriota
  • Swarm Technologies
  • Astrocast
  • TDRSS

    Internet access

Other Internet access systems are proposed or currently being developed:
ConstellationManufacturerNumberWeightAltitudeOfferBandInter-sat.
links
IRIS²European Space AgencyTBDTBD
Telesat LEO117–51220162027Fiber-optic cable-likeKa Optical
HongyunCASIC15620172022
HongyanCASC320-86420172023
Hanwha Systems200020222025
Project KuiperAmazon32362019202456°S to 56°N

Some systems were proposed but never realized:
NameOperatorConstellation designFreq.ServicesAbandoned date
CelestriMotorola63 satellites at 1400 km, 48° Ka band Global, low-latency broadband Internet services1998 May
TeledesicTeledesicKa band 100 Mbit/s up, 720 Mbit/s down global internet access2002 October
LeoSatThales Alenia78–108 satellites at 1400 kmKa High-speed broadband internet2019

; Progress