STS-87


STS-87 was a Space Shuttle mission launched from Launch Complex 39B of the Kennedy Space Center on 19 November 1997. It was the 88th flight of the Space Shuttle and the 24th flight of Columbia. The mission goals were to conduct experiments using the United States Microgravity Payload, conduct two EVAs, and deploy the SPARTAN-201 experiment. This mission marked the first time an EVA was performed from Columbia. EVAs from Columbia were originally planned for STS-5 in 1982 and STS-80 in 1996, but were canceled due to spacesuit and airlock problems, respectively. It also marked the first EVA conducted by a Japanese astronaut, Takao Doi.

Crew

Backup crew

Space walks

  • Scott and Doi – EVA 1
  • EVA 1 Start: 25 November 1997 – 00:02 UTC
  • EVA 1 End: 25 November 1997 – 07:45 UTC
  • Duration: 7 hours, 43 minutes
  • Scott and Doi – EVA 2
  • EVA 2 Start: 3 December 1997 – 09:09 UTC
  • EVA 2 End: 3 December 1997 – 14:09 UTC
  • Duration: 4 hours, 59 minutes

    Crew seat assignments

Mission highlights

STS-87 flew the United States Microgravity Payload, Spartan-201, Orbital Acceleration Research Experiment, TEVA Demonstration Flight Test 5, the Shuttle Ozone Limb Sending Experiment, the Loop Heat Pipe, the Sodium Sulfur Battery Experiment, the Turbulent GAS Jet Diffusion experiment, and the Autonomous EVA Robotic Camera/Sprint experiment. Mid-deck experiments included the Middeck Glovebox Payload and the Collaborative Ukrainian Experiment.

United States Microgravity Payload

The United States Microgravity Payload was a Spacelab project managed by Marshall Space Flight Center, Huntsville, Alabama. The complement of microgravity research experiments was divided between two Mission-Peculiar Experiment Support Structures in the payload bay. The extended mission capability offered by the Extended Duration Orbiter kit provides an opportunity for additional science gathering time.

SPARTAN-201

Spartan 201-04 was a Solar Physics Spacecraft designed to perform remote sensing of the hot outer layers of the Sun's atmosphere or solar corona. It was expected to be deployed on orbit 18 and retrieved on orbit 52. The objective of the observations was to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind that originates in the corona. Two primary experiments were the Ultraviolet Coronal Spectrometer from the Smithsonian Astrophysical Observatory and the White Light Coronograph from the High Altitude Observatory. Spartan 201 had three secondary experiments. The Technology Experiment Augmenting Spartan was a Radio Frequency communications experiment that provided flight experience for components baselined on future Spartan missions, and a real-time communications and control link with the primary Spartan 201 experiments. This link was used to provide a fine-pointing adjustment to the WLC based on solar images downlinked in real-time. The Video Guidance Sensor Flight Experiment was a laser guidance system that tested a key component of the Automated Rendezvous and Capture system. The Spartan Auxiliary Mounting Plate was a small equipment mounting plate that provided a mounting location for small experiments or auxiliary equipment of the Spartan Flight Support Structure It was a honeycomb plate using an experimental silicon carbide aluminum face sheet material with an aluminum core.

Advanced Automated Directional Solidification Furnace

The Advanced Automated Directional Solidification Furnace was a sophisticated materials science facility used for studying a common method of processing semiconductor crystals called directional solidification. Solidification is the process of freezing materials. In the type of directional solidification used in AADSF, the liquid sample, enclosed in quartz ampoules, slowly solidified along the long axis. A mechanism moved the sample through varying temperature zones in the furnace. To start processing, the furnace melted all but one end of the sample towards the other. Once crystallized, the sample remained in the furnace to be examined post-flight. The solidification front was of particular interest to scientists because the flows found in the liquid material influence the final composition and structure of the solid and its properties.

Confined Helium Experiment

The Confined Helium Experiment provided a test of theories of the influence of boundaries on the matter by measuring the heat capacity of helium as it is confined to two dimensions.

Isothermal Dendritic Growth Experiment

The Isothermal Dendritic Growth Experiment was a materials science solidification experiment that researchers used to investigate a particular type of solidification called dendritic growth. Dendritic solidification is one of the most common forms of solidifying metals and alloys. When materials crystallize or solidify under certain conditions, they freeze unstably, resulting in tiny, tree-like crystalline forms called dendrites. Scientists are particularly interested in dendrite size, shape, and how the branches of the dendrites interact with each other. These characteristics largely determine the properties of the material.
Designed for research on the directional solidification of metallic alloys, the Material pour l'Étude des Phénomènes Intéressant la Solidification sur Terre et en Orbite experiment was primarily interested in measuring the temperature, velocity, and shape of the solidification front. MEPHISTO simultaneously processed three identical cylindrical samples of bismuth and tin alloy. In the first sample, the temperature fluctuations of the moving solidification were measured electrically, disturbing the sample. The position of the solid to liquid border was determined by an electrical resistance technique in the second sample. In the third sample, the faceted solidification front was marked at selected intervals with electric current pulses. The samples were returned to Earth for analysis. During the mission, MEPHISTO data were correlated with data from the Space Acceleration Measurement System. By comparing data, scientists determined how accelerations aboard the shuttle disturbed the solid to the liquid interface.

Space Acceleration Measurement System

The Space Acceleration Measurement System, sponsored by NASA Lewis Research Center, was a microprocessor-driven data acquisition system designed to measure and record the microgravity acceleration environment of the USMP carrier. The SAMS had three triaxial sensor heads that were separate from the electronics package for remote positioning. In operation, the triaxial sensor head produced output signals in response to acceleration inputs. The signals were amplified, filtered, and converted into digital data. The digital acceleration data were transferred to optical disk memory for ground analysis and downlinked to the ground for near-real-time analysis. Each accelerometer had a mass suspended by a quartz element allowing movement along one axis only. A coil was attached to the mass and the assembly was placed between two permanent magnets. An applied acceleration displaced the mass from its resting position. This movement was sensed by a detector, causing SAMS electronics to send a voltage to the coil, producing exactly the magnetic field needed to restore the mass to its original position. The applied voltage was proportional to the applied acceleration and was output to the SAMS electronics as acceleration data.

Orbital Acceleration Research Experiment

While flying separately in the cargo bay, the Orbital Acceleration Research Experiment, sponsored by NASA Lewis Research Center, was an integral part of USMP-04. It was a highly sensitive instrument designed to measure low-level aerodynamic acceleration along the orbiter's principal axes in the free-molecular flow regime at orbital altitudes and in the transition regime during re-entry. OARE data were also downlinked during the mission for near-real-time analysis in support of the USMP science experiments. OARE data supported advances in space materials processing by providing measurements of the low-level, low-frequency disturbance environment affecting various microgravity experiments. OARE data also supported advances in orbital drag prediction technology by increasing the understanding of the fundamental flow phenomena in the upper atmosphere.

Shuttle Ozone Limb Sounding Experiment

The objective of the Shuttle Ozone Limb Sounding Experiment was to determine the altitude distribution of ozone in an attempt to understand its behavior so that quantitative changes in the composition of the atmosphere can be predicted. SOLSE was intended to perform ozone distribution that a nadir instrument can achieve. This was performed using Charged Coupled Device technology to eliminate moving parts in a simpler, low-cost, ozone mapping instrument. The experiment was housed in a Hitchhiker canister with a canister extension ring and equipped with a Hitchhiker Motorized Door Assembly. Instrumentation included an Ultraviolet spectrograph with a CCD array detector, CCD array and visible light cameras, calibration lamp, optics, and baffling. Once in orbit, a crew member activated SOLSE which performed limb and Earth viewing observations. Limb observations focuses on the region to altitude above the horizon for the Earth's surface. Earth viewing observations enabled SOLSE to correlate the data with other nadir viewing, ozone instruments.

Loop Heat Pipe

The Loop Heat Pipe test advanced thermal energy management technology and validating technology readiness for upcoming commercial spacecraft applications. The LHP was operated with anhydrous ammonia as the working fluid to transport thermal energy with high effective conductivity in zero gravity. LHP was a passive, two-phase flow heat transfer device that was capable of transporting up to 400 watts over a distance of 5 meters through semiflexible, small-diameter tubes. It used capillary forces to circulate the two-phase working fluid. The system was self-priming and totally passive in operation. When heat was applied to the LHP evaporator, part of the working fluid vaporized. The vapor flowed through the vapor transport lines and condensed, releasing heat. The condensation returned to the evaporator via capillary action through the liquid transport lines.