SMART-1
SMART-1 was a European Space Agency satellite that orbited the Moon. It was launched on 27 September 2003 at 23:14 UTC from the Guiana Space Centre in Kourou, French Guiana. "SMART-1" stands for Small Missions for Advanced Research in Technology-1, part of the Small Missions for Advanced Research in Technology programme. On 3 September 2006, SMART-1 was deliberately crashed into the Moon's surface, ending its mission.
Spacecraft design
SMART-1 was about one meter across, and lightweight in comparison to other probes. Its launch mass was 367 kg or 809 pounds, of which 287 kg was non-propellant.It was propelled by a solar-powered Hall-effect thruster using 82 kg of xenon gas contained in a 50 litres tank at a pressure of 150 bar at launch. The ion engine thruster used an electrostatic field to ionize the xenon and accelerate the ions achieving a specific impulse of 16.1 kN·s/kg, more than three times the maximum for chemical rockets. One kg of propellant produced a delta-v of about 45 m/s. The electric propulsion subsystem weighted 29 kg with a peak power consumption of 1,200 watts. SMART-1 was the first in the program of ESA's Small Missions for Advanced Research and Technology.
The solar arrays made capable of 1850 W at the beginning of the mission, were able to provide the maximum set of 1,190 W to the thruster, giving a nominal thrust of 68 mN, hence an acceleration of 0.2 mm/s2 or 0.7 m/s per hour. As with all ion-engine powered craft, orbital maneuvers were not carried out in short bursts but very gradually. The particular trajectory taken by SMART-1 to the Moon required thrusting for about one third to one half of every orbit. When spiraling away from the Earth thrusting was done on the perigee part of the orbit. At the end of the mission, the thruster had demonstrated the following capability:
- Thruster operating time: 5000 h
- Xenon throughput: 82 kg
- Total Impulse: 1.2 MN-s
- Total ΔV: 3.9 km/s
Instruments
AMIE
The Advanced Moon micro-Imager Experiment was a miniature colour camera for lunar imaging. The CCD camera with three filters of 750, 900 and 950 nm was able to take images with an average pixel resolution of 80 m. The camera weighed 2.1 kg and had a power consumption of 9 watts.D-CIXS
The Demonstration of a Compact X-ray Spectrometer was an X-ray telescope for the identification of chemical elements on the lunar surface. It detected the X-ray fluorescence of crystal compounds created through the interaction of the electron shell with the solar wind particles to measure the abundance of the three main components: magnesium, silicon and aluminium. The detection of iron, calcium and titanium depended on the solar activity. The detection range for X-rays was 0.5 to 10 keV. The spectrometer and XSM together weighed 5.2 kg and had a power consumption of 18 watts.XSM
The X-ray solar monitor studied the solar variability to complement D-CIXS measurements.SIR
The Smart-1 Infrared Spectrometer was an infrared spectrometer for the identification of mineral spectra of olivine and pyroxene. It detected wavelengths from 0.93 to 2.4 μm with 256 channels. The package weighed 2.3 kg and had a power consumption of 4.1 watts.EPDP
The Electric Propulsion Diagnostic Package was to acquire data on the new propulsion system on SMART-1. The package weighed 0.8 kg and had a power consumption of 1.8 watts.SPEDE
The Spacecraft Potential, Electron and Dust Experiment. The experiment weighed 0.8 kg and had a power consumption of 1.8 watts. Its function was to measure the properties and density of the plasma around the spacecraft, either as a Langmuir probe or as an electric field probe. SPEDE observed the emission of the spacecraft's ion engine and the "wake" the Moon leaves to the solar wind. Unlike most other instruments that have to be shut down to prevent damage, SPEDE could keep measuring inside radiation belts and in solar storms, such as the Halloween 2003 solar storms. It was built by Finnish Meteorological Institute and its name was intentionally chosen so that its acronym is the same as the nickname of Spede Pasanen, a famous Finnish movie actor, movie producer, and inventor. The algorithms developed for SPEDE were later used in the ESA lander Philae.KATE
TT&C Experiment. The experiment weighed 6.2 kg and had a power consumption of 26 watts. The Ka-band transponder was designed as precursor for BepiColombo to perform radio science investigations and to monitor the dynamical performance of the electric propulsion system.Flight
SMART-1 was launched 27 September 2003 together with Insat 3E and eBird 1, by an Ariane 5 rocket from the Guiana Space Centre in French Guiana. After 42 minutes it was released into a geostationary transfer orbit of 7,035 × 42,223 km. From there it used its Solar Electric Primary Propulsion to gradually spiral out during thirteen months.The orbit can be seen up to 26 October 2004 at , when the orbit was 179,718 × 305,214 km. On that date, after the 289th engine pulse, the SEPP had accumulated a total on-time of nearly 3,648 hours out of a total flight time of 8,000 hours, hence a little less than half of its total mission. It consumed about 58.8 kg of xenon and produced a delta-v of 2,737 m/s. It was powered on again on 15 November for a planned burn of 4.5 days to enter fully into lunar orbit. It took until February 2005 using the electric thruster to decelerate into the final orbit 300–3,000 km above the Moon's surface. The end of mission performance demonstrated by the propulsion system is stated above.
| Epoch | Perigee | Apogee | Eccentricity | Inclination | Period |
| 27 September 2003 | ~7,035 | ~42,223 | ~0.714 | ~6.9 | ~10.6833 |
| 26 October 2003, 21:20:00.0 | 8,687.994 | 44,178.401 | 0.671323 | 6.914596 | 11.880450 |
| 19 November 2003, 04:29:48.4 | 10,843.910 | 46,582.165 | 0.622335 | 6.861354 | 13.450152 |
| 19 December 2003, 06:41:47.6 | 13,390.351 | 49,369.049 | 0.573280 | 6.825455 | 15.366738 |
| 29 December 2003, 05:21:47.8 | 17,235.509 | 54,102.642 | 0.516794 | 6.847919 | 18.622855 |
| 19 February 2004, 22:46:08.6 | 20,690.564 | 65,869.222 | 0.521936 | 6.906311 | 24.890737 |
| 19 March 2004, 00:40:52.7 | 20,683.545 | 66,915.919 | 0.527770 | 6.979793 | 25.340528 |
| 25 August 2004, 00:00:00 | 37,791.261 | 240,824.363 | 0.728721 | 6.939815 | 143.738051 |
| 19 October 2004, 21:30:45.9 | 69,959.278 | 292,632.424 | 0.614115 | 12.477919 | 213.397970 |
| 24 October 2004, 06:12:40.9 | 179,717.894 | 305,214.126 | 0.258791 | 20.591807 | 330.053834 |
After its last perigee on 2 November, on 11 November 2004 it passed through the Earth-Moon L1 Lagrangian Point and into the area dominated by the Moon's gravitational influence, and at 1748 UT on 15 November passed the first periselene of its lunar orbit. The osculating orbit on that date was 6,704 × 53,208 km, with an orbital period of 129 hours, although the actual orbit was accomplished in only 89 hours. This illustrates the significant impact that the engine burns have on the orbit and marks the meaning of the osculating orbit, which is the orbit that would be travelled by the spacecraft if at that instant all perturbations, including thrust, would cease.
| Epoch | Periselene | Aposelene | Eccentricity | Inclination | Period |
| 15 November 2004, 17:47:12.1 | 6,700.720 | 53,215.151 | 0.776329 | 81.085 | 129.247777 |
| 4 December 2004 10:37:47.3 | 5,454.925 | 20,713.095 | 0.583085 | 83.035 | 37.304959 |
| 9 January 2005, 15:24:55.0 | 2,751.511 | 6,941.359 | 0.432261 | 87.892 | 8.409861 |
| 28 February 2005, 05:18:39.9 | 2,208.659 | 4,618.220 | 0.352952 | 90.063603 | 4.970998 |
| 25 April 2005, 08:19:05.4 | 2,283.738 | 4,523.111 | 0.328988 | 90.141407 | 4.949137 |
| 16 May 2005, 09:08:52.9 | 2,291.250 | 4,515.857 | 0.326807 | 89.734929 | 4.949919 |
| 20 June 2005, 10:21:37.1 | 2,256.090 | 4,549.196 | 0.336960 | 90.232619 | 4.947432 |
| 18 July 2005, 11:14:28.0 | 2,204.645 | 4,600.376 | 0.352054 | 90.263741 | 4.947143 |
ESA announced on 15 February 2005 an extension of the mission of SMART-1 by one year until August 2006. This date was later shifted to 3 September 2006 to enable further scientific observations from Earth.