Rivet
A rivet is a permanent mechanical fastener. Before being installed, a rivet consists of a smooth cylindrical shaft with a head on one end. The end opposite the head is called the tail. On installation, the deformed end is called the shop head or buck-tail.
Because there is effectively a head on each end of an installed rivet, it can support tension loads. However, it is much more capable of supporting shear loads.
Fastenings used in traditional wooden boat building, such as copper nails and clinch bolts, work on the same principle as the rivet but were in use long before the term rivet was introduced and, where they are remembered, are usually classified among nails and bolts respectively.
History
Solid rivets are one of the oldest and most reliable types of fasteners, having been found in archaeological findings dating back to the Bronze Age. Rivet holes have been found in Egyptian spearheads dating back to the Naqada culture of between 4400 and 3000 B.C. Archeologists have also uncovered many Bronze Age swords and daggers with rivet holes where the handles would have been. The rivets themselves were essentially short rods of metal, which metalworkers hammered into a pre-drilled hole on one side and deformed on the other to hold them in place.High-strength bolts have largely replaced structural steel rivets. Indeed, the latest steel construction specifications published by AISC no longer cover their installation. The reason for the change is primarily due to the expense of skilled workers required to install high-strength structural steel rivets.
Installation
There are several methods for installing solid rivets.- Manually with hammer and handset or bucking bar
- Pneumatic hammers
- Handheld squeezers
- Riveting machines
- Pin hammer, rivet set
Rivets may also be upset by hand, using a ball-peen hammer. The head is placed in a special hole made to accommodate it, known as a rivet-set. The hammer is applied to the buck-tail of the rivet, rolling an edge so that it is flush against the material.
Until relatively recently, structural steel connections were either welded or riveted. Whereas two relatively unskilled workers can install and tighten high-strength bolts, it normally takes four skilled workers to install rivets.
At a central location near the areas being riveted, a furnace was set up. Rivets were placed in the furnace and heated to approximately or "cherry red." The rivet warmer or cook used tongs to remove individual rivets and throw them to a catcher stationed near the joints to be riveted. The catcher caught the rivet in a leather or wooden bucket with an ash-lined bottom. The catcher inserted the rivet into the hole to be riveted, then quickly turned to catch the next rivet. The holder up or holder on would hold a heavy bucking bar or dolly or another pneumatic jack against the round "shop head" of the rivet, while the riveter applied a hammer or pneumatic rivet hammer with a "rivet set" to the tail of the rivet, making it mushroom against the joint forming the "field head" into its final domed shape. Alternatively, the buck is hammered more or less flush with the structure in a counter-sunk hole. On cooling, the rivet contracted axially exerting the clamping force on the joint. Before the use of pneumatic hammers, e.g. in the construction of RMS Titanic, the person who hammered the rivet was known as the "basher".
Types
Solid rivets
Solid rivets consist simply of a shaft and head that are deformed with a hammer or rivet gun. A rivet compression or crimping tool can also deform this type of rivet. This tool is mainly used on rivets close to the edge of the fastened material since the tool is limited by the depth of its frame. A rivet compression tool does not require two people and is generally the most foolproof way to install solid rivets.Solid rivets are used in applications where reliability and safety count. A typical application for solid rivets can be found within the structural parts of aircraft. Hundreds of thousands of solid rivets are used to assemble the frame of a modern aircraft. Such rivets come with rounded or 100° countersunk heads. Typical materials for aircraft rivets are aluminium alloys, titanium, and nickel-based alloys. Some aluminium alloy rivets are too hard to buck and must be softened by solution treating prior to being bucked. "Ice box" aluminium alloy rivets harden with age, and must likewise be annealed and then kept at sub-freezing temperatures to slow the age-hardening process. Steel rivets can be found in static structures such as bridges, cranes, and building frames.
The setting of these fasteners requires access to both sides of a structure. Solid rivets are driven using a hydraulically, pneumatically, or electromagnetically actuated squeezing tool or even a handheld hammer. Applications where only one side is accessible require "blind" rivets.
Solid rivets are also used by some artisans in the construction of modern reproduction of medieval armour, jewellery and metal couture.
Semi-tubular rivets
Semi-tubular rivets are similar to solid rivets, except they have a partial hole at the tip. The purpose of this hole is to reduce the amount of force needed for application by rolling the tubular portion outward. The force needed to apply a semi-tubular rivet is about 1/4 of the amount needed to apply a solid rivet. Tubular rivets are sometimes preferred for pivot points since the swelling of the rivet is only at the tail. The type of equipment used to apply semi-tubular rivets ranges from prototyping tools to fully automated systems. Typical installation tools are hand set, manual squeezer, pneumatic squeezer, kick press, impact riveter, and finally PLC-controlled robotics. The most common machine is the impact riveter and the most common use of semi-tubular rivets is in lighting, brakes, ladders, binders, HVAC duct-work, mechanical products, and electronics. They are offered from 1/16-inch to 3/8-inch in diameter and can be up to 8 inches long. A wide variety of materials and platings are available, most common base metals are steel, brass, copper, stainless, aluminum and the most common platings are zinc, nickel, brass, tin. Tubular rivets are normally waxed to facilitate proper assembly. An installed tubular rivet has a head on one side, with a rolled-over and exposed shallow blind hole on the other.Blind rivets
Blind rivets, commonly referred to as "pop" rivets are tubular and are supplied with a nail-like mandrel through the center which has a "necked" or weakened area near the head. The rivet assembly is inserted into a hole drilled through the parts to be joined and a specially designed tool is used to draw the mandrel through the rivet. The compression force between the head of the mandrel and the tool expands the diameter of the tube throughout its length, locking the sheets being fastened if the hole was the correct size. The head of the mandrel also expands the blind end of the rivet to a diameter greater than that of the drilled hole, compressing the fastened sheets between the head of the rivet and the head of the mandrel. At a predetermined tension, the mandrel breaks at the necked location. With open tubular rivets, the head of the mandrel may or may not remain embedded in the expanded portion of the rivet, and can come loose at a later time. More expensive closed-end tubular rivets are formed around the mandrel so the head of the mandrel is always retained inside the blind end after installation. "Pop" rivets can be fully installed with access to only one side of a part or structure.Prior to the invention of blind rivets, installation of a rivet typically required access to both sides of the assembly: a rivet hammer on one side and a bucking bar on the other side. In 1916, Royal Navy reservist and engineer Hamilton Neil Wylie filed a patent for an "improved means of closing tubular rivets". In 1922 Wylie joined the British aircraft manufacturer Armstrong-Whitworth Ltd to advise on metal construction techniques; here he continued to develop his rivet design with a further 1927 patent that incorporated the pull-through mandrel and allowed the rivet to be used blind. By 1928, the George Tucker Eyelet Company, of Birmingham, England, produced a "cup" rivet based on the design. It required a separate GKN mandrel and the rivet body to be hand-assembled prior to use for the building of the Siskin III aircraft. Together with Armstrong-Whitworth, the Geo. Tucker Co. further modified the rivet design to produce a one-piece unit incorporating a mandrel and rivet. This product was later developed in aluminium and trademarked as the "POP" rivet. The United Shoe Machinery Co. produced the design in the U.S. as inventors such as Carl Cherry and Lou Huck experimented with other techniques for expanding solid rivets.
They are available in flat head, countersunk head, and modified flush head with standard diameters of. Blind rivets are made from soft aluminum alloy, steel, copper, and Monel.
There are also , which are designed to take shear and tensile loads.
The rivet body is normally manufactured using one of three methods: wire, tube and sheet.
There is a vast array of specialty blind rivets that are suited for high strength or plastic applications. Typical types include:
- TriFold: a rivet that splits into three equal legs like a molly bolt. Typically used in soft plastics where a wide footprint is needed at the rear surface. Used in automotive interiors and vinyl fences
- Structural rivet: an "external" mechanically locked structural blind rivet that is used where a watertight, vibration resistant connection is of importance. Typically used in manufacture or repair of truck bodies. A special nosepiece is required to apply this rivet
- Structural rivet: an "internal" mechanically locked structural blind rivet that is used where a watertight, vibration resistant connection is of importance. Typically used in manufacture or repair of truck bodies
The typical assembly process requires the operator to install the rivet in the nose of the tool by hand and then actuate the tool. However, in recent years automated riveting systems have become popular in an effort to reduce assembly costs and repetitive disorders. The cost of such tools ranges from US$1,500 for auto-feed pneumatics to US$50,000 for fully robotic systems.
While structural blind rivets using a locked mandrel are common, there are also aircraft applications using "non-structural" blind rivets where the reduced, but still predictable, strength of the rivet without the mandrel is used as the design strength. A method popularized by Chris Heintz of Zenith Aircraft uses a common flat-head rivet which is drawn into a specially machined nosepiece that forms it into a round-head rivet, taking up much of the variation inherent in hole size found in amateur aircraft construction. Aircraft designed with these rivets use rivet strength figures measured with the mandrel removed.