River engineering


River engineering is a discipline of civil engineering which studies human intervention in the course, characteristics, or flow of a river with the intention of producing some defined benefit. People have intervened in the natural course and behaviour of rivers since before recorded history—to manage the water resources, to protect against flooding, or to make passage along or across rivers easier. Since the Yuan Dynasty and Ancient Roman times, rivers have been used as a source of hydropower.
From the late 20th century onward, the practice of river engineering has responded to environmental concerns broader than immediate human benefit. Some river engineering projects have focused exclusively on the restoration or protection of natural characteristics and habitats.

Hydromodification

Hydromodification encompasses the systematic response to alterations to riverine and non-riverine water bodies such as coastal waters and lakes. The U.S. Environmental Protection Agency has defined hydromodification as the "alteration of the hydrologic characteristics of coastal and non-coastal waters, which in turn could cause degradation of water resources." River engineering has often resulted in unintended systematic responses, such as reduced habitat for fish and wildlife, and alterations of water temperature and sediment transport patterns.
Beginning in the late 20th century, the river engineering discipline has been more focused on repairing hydromodified degradations and accounting for potential systematic response to planned alterations by considering fluvial geomorphology. Fluvial geomorphology is the study of how rivers change their form over time. Fluvial geomorphology is the cumulation of a number of sciences including open channel hydraulics, sediment transport, hydrology, physical geology, and riparian ecology. River engineering practitioners attempt to understand fluvial geomorphology, implement a physical alteration, and maintain public safety.

Characteristics of rivers

The size of rivers above any tidal limit and their average freshwater discharge are proportionate to the extent of their basins and the amount of rain which, after falling over these basins, reaches the river channels in the bottom of the valleys, by which it is conveyed to the sea.
The drainage basin of a river is the expanse of country bounded by a watershed over which rainfall flows down towards the river traversing the lowest part of the valley, whereas the rain falling on the far slope of the watershed flows away to another river draining an adjacent basin. River basins vary in extent according to the configuration of the country, ranging from the insignificant drainage areas of streams rising on high ground near the coast and flowing straight down into the sea, up to immense tracts of continents, where rivers rising on the slopes of mountain ranges far inland have to traverse vast stretches of valleys and plains before reaching the ocean. The size of the largest river basin of any country depends on the extent of the continent in which it is situated, its position in relation to the hilly regions in which rivers generally arise and the sea into which they flow, and the distance between the source and the outlet into the sea of the river draining it.
The rate of flow of rivers depends mainly upon their fall, also known as the gradient or slope. When two rivers of different sizes have the same fall, the larger river has the quicker flow, as its retardation by friction against its bed and banks is less in proportion to its volume than is the case with the smaller river. The fall available in a section of a river approximately corresponds to the slope of the country it traverses; as rivers rise close to the highest part of their basins, generally in hilly regions, their fall is rapid near their source and gradually diminishes, with occasional irregularities, until, in traversing plains along the latter part of their course, their fall usually becomes quite gentle. Accordingly, in large basins, rivers in most cases begin as torrents with a variable flow, and end as gently flowing rivers with a comparatively regular discharge.
The irregular flow of rivers throughout their course forms one of the main difficulties in devising works for mitigating inundations or for increasing the navigable capabilities of rivers. In tropical countries subject to periodical rains, the rivers are in flood during the rainy season and have hardly any flow during the rest of the year, while in temperate regions, where the rainfall is more evenly distributed throughout the year, evaporation causes the available rainfall to be much less in hot summer weather than in the winter months, so that the rivers fall to their low stage in the summer and are liable to be in flood in the winter. In fact, with a temperate climate, the year may be divided into a warm and a cold season, extending from May to October and from November to April in the Northern Hemisphere respectively; the rivers are low and moderate floods are of rare occurrence during the warm period, and the rivers are high and subject to occasional heavy floods after a considerable rainfall during the cold period in most years. The only exceptions are rivers which have their sources amongst mountains clad with perpetual snow and are fed by glaciers; their floods occur in the summer from the melting of snow and ice, as exemplified by the Rhône above the Lake of Geneva, and the Arve which joins it below. But even these rivers are liable to have their flow modified by the influx of tributaries subject to different conditions, so that the Rhone below Lyon has a more uniform discharge than most rivers, as the summer floods of the Arve are counteracted to a great extent by the low stage of the Saône flowing into the Rhone at Lyon, which has its floods in the winter when the Arve, on the contrary, is low.
Another serious obstacle encountered in river engineering consists in the large quantity of detritus they bring down in flood-time, derived mainly from the disintegration of the surface layers of the hills and slopes in the upper parts of the valleys by glaciers, frost and rain. The power of a current to transport materials varies with its velocity, so that torrents with a rapid fall near the sources of rivers can carry down rocks, boulders and large stones, which are by degrees ground by attrition in their onward course into slate, gravel, sand and silt, simultaneously with the gradual reduction in fall, and, consequently, in the transporting force of the current. Accordingly, under ordinary conditions, most of the materials brought down from the high lands by torrential water courses are carried forward by the main river to the sea, or partially strewn over flat alluvial plains during floods; the size of the materials forming the bed of the river or borne along by the stream is gradually reduced on proceeding seawards, so that in the Po River in Italy, for instance, pebbles and gravel are found for about 140 miles below Turin, sand along the next 100 miles, and silt and mud in the last 110 miles.

Channelization

The removal of obstructions, natural or artificial from a river bed furnishes a simple and efficient means of increasing the discharging capacity of its channel. Such removals will consequently lower the height of floods upstream. Every impediment to the flow, in proportion to its extent, raises the level of the river above it so as to produce the additional artificial fall necessary to convey the flow through the restricted channel, thereby reducing the total available fall.
Reducing the length of the channel by substituting straight cuts for a winding course is the only way in which the effective fall can be increased. This involves some loss of capacity in the channel as a whole, and in the case of a large river with a considerable flow it is difficult to maintain a straight cut owing to the tendency of the current to erode the banks and form again a sinuous channel. Even if the cut is preserved by protecting the banks, it is liable to produce changes shoals and raise the flood-level in the channel just below its termination. Nevertheless, where the available fall is exceptionally small, as in land originally reclaimed from the sea, such as the English Fenlands, and where, in consequence, the drainage is in a great measure artificial, straight channels have been formed for the rivers. Because of the perceived value in protecting these fertile, low-lying lands from inundation, additional straight channels have also been provided for the discharge of rainfall, known as drains in the fens. Even extensive modification of the course of a river combined with an enlargement of its channel often produces only a limited reduction in flood damage. Consequently, such floodworks are only commensurate with the expenditure involved where significant assets are under threat. Additionally, even when successful, such floodworks may simply move the problem further downstream and threaten some other town. Recent floodworks in Europe have included restoration of natural floodplains and winding courses, so that floodwater is held back and released more slowly.
Human intervention sometimes inadvertently modifies the course or characteristics of a river, for example by introducing obstructions such as mining refuse, sluice gates for mills, fish-traps, unduly wide piers for bridges and solid weirs. By impeding flow these measures can raise the flood-level upstream. Regulations for the management of rivers may include stringent prohibitions with regard to pollution, requirements for enlarging sluice-ways and the compulsory raising of their gates for the passage of floods, the removal of fish traps, which are frequently blocked up by leaves and floating rubbish, reduction in the number and width of bridge piers when rebuilt, and the substitution of movable weirs for solid weirs.
By installing gauges in a fairly large river and its tributaries at suitable points, and keeping continuous records for some time of the heights of the water at the various stations, the rise of the floods in the different tributaries, the periods they take in passing down to definite stations on the main river, and the influence they severally exercise on the height of the floods at these places, can be ascertained. With the help of these records, and by observing the times and heights of the maximum rise of a particular flood at the stations on the various tributaries, the time of arrival and height of the top of the flood at any station on the main river can be predicted with remarkable accuracy two or more days beforehand. By communicating these particulars about a high flood to places on the lower river, weir-keepers are enabled to fully open the movable weirs beforehand to permit the passage of the flood, and riparian inhabitants receive timely warning of the impending inundation.
Where portions of a riverside town are situated below the maximum flood-level, or when it is important to protect land adjoining a river from inundations, the overflow of the river must be diverted into a flood-dam or confined within continuous embankments on both sides. By placing these embankments somewhat back from the margin of the river-bed, a wide flood-channel is provided for the discharge of the river as soon as it overflows its banks, while leaving the natural channel unaltered for the ordinary flow. Low embankments may be sufficient where only exceptional summer floods have to be excluded from meadows. Occasionally the embankments are raised high enough to retain the floods during most years, while provision is made for the escape of the rare, exceptionally high floods at special places in the embankments, where the scour of the issuing current is guarded against, and the inundation of the neighboring land is least injurious. In this manner, the increased cost of embankments raised above the highest flood-level of rare occurrence is avoided, as is the danger of breaches in the banks from an unusually high flood-rise and rapid flow, with their disastrous effects.