Depth perception


Depth perception is the ability to perceive distance to objects in the world using the visual system and visual perception. It is a major factor in perceiving the world in three dimensions.
Depth sensation is the corresponding term for non-human animals, since although it is known that they can sense the distance of an object, it is not known whether they perceive it in the same way that humans do.
Depth perception arises from a variety of depth cues. These are typically classified into binocular cues and monocular cues. Binocular cues are based on the receipt of sensory information in three dimensions by both eyes while monocular cues can be observed with just one eye. Binocular cues include retinal disparity, which exploits parallax and vergence. Stereopsis is made possible with binocular vision. Monocular cues include relative size, texture gradient, occlusion, linear perspective, contrast differences, and motion parallax.

Monocular cues

cues provide depth information even when viewing a scene with only one eye.

Motion parallax

When an observer moves, the apparent relative motion of several stationary objects against a background gives hints about their relative distance. If information about the direction and velocity of movement is known, motion parallax can provide absolute depth information. This effect can be seen clearly when riding in a car. Nearby things pass quickly, while far-off objects appear stationary. Some animals that lack binocular vision due to their eyes having little common field-of-view employ motion parallax more explicitly than humans for depth cueing.

When an object moves toward the observer, the retinal projection of an object expands over a period of time, which leads to the perception of movement in a line toward the observer. Another name for this phenomenon is depth from optical expansion. The dynamic stimulus change enables the observer not only to see the object as moving, but to perceive the distance of the moving object. Thus, in this context, the changing size serves as a distance cue. A related phenomenon is the visual system's capacity to calculate time-to-contact of an approaching object from the rate of optical expansiona useful ability in contexts ranging from driving a car to playing a ball game. However, the calculation of TTC is, strictly speaking, a perception of velocity rather than depth.

Kinetic depth effect

If a stationary rigid figure is placed in front of a point source of light so that its shadow falls on a translucent screen, an observer on the other side of the screen will see a two-dimensional pattern of lines. But if the cube rotates, the visual system will extract the necessary information for perception of the third dimension from the movements of the lines, and a cube is seen. This is an example of the kinetic depth effect. The effect also occurs when the rotating object is solid, provided that the projected shadow consists of lines which have definite corners or end points, and that these lines change in both length and orientation during the rotation.

Perspective

The property of parallel lines converging in the distance, at infinity, allows us to reconstruct the relative distance of two parts of an object, or of landscape features. An example would be standing on a straight road, looking down the road, and noticing the road narrows as it goes off in the distance. Visual perception of perspective in real space, for instance in rooms, in settlements and in nature, is a result of several optical impressions and the interpretation by the visual system. The angle of vision is important for the apparent size. A nearby object is imaged on a larger area on the retina, while the same object or an object of the same size further away is imaged on a smaller area. The perception of perspective is possible when looking with one eye only, but stereoscopic vision enhances the impression of the spatial. Regardless of whether the light rays entering the eye come from a three-dimensional space or from a two-dimensional image, they hit the inside of the eye on the retina as a surface. What a person sees, is based on the reconstruction by their visual system, in which one and the same image on the retina can be interpreted both two-dimensionally and three-dimensionally. If a three-dimensional interpretation has been recognised, it receives a preference and determines the perception.
In spatial vision, the horizontal line of sight can play a role. In the picture taken from the window of a house, the horizontal line of sight is at the level of the second floor. Below this line, the further away objects are, the higher up in the visual field they appear. Above the horizontal line of sight, objects that are further away appear lower than those that are closer. To represent spatial impressions in graphical perspective, one can use a vanishing point. When looking at long geographical distances, perspective effects also partially result from the angle of vision, but not only by this. In picture 5 of the series, in the background is Mont Blanc, the highest mountain in the Alps. It appears lower than the mountain in front in the center of the picture. Measurements and calculations can be used to determine the proportion of the curvature of Earth in the subjectively perceived proportions.

Relative size

If two objects are known to be the same size but their absolute size is unknown, relative size cues can provide information about the relative depth of the two objects. If one subtends a larger visual angle on the retina than the other, the object which subtends the larger visual angle appears closer.

Familiar size

Since the visual angle of an object projected onto the retina decreases with distance, this information can be combined with previous knowledge of the object's size to determine the absolute depth of the object. For example, people are generally familiar with the size of an average automobile. This prior knowledge can be combined with information about the angle it subtends on the retina to determine the absolute depth of an automobile in a scene.

Absolute size

Even if the actual size of the object is unknown and there is only one object visible, a smaller object seems farther away than a large object that is presented at the same location.

Aerial perspective

Due to light scattering by the atmosphere, objects that are a great distance away have lower luminance contrast and lower color saturation. Due to this, images seem hazy the farther they are away from a person's point of view. In computer graphics, this is often called "distance fog". The foreground has high contrast; the background has low contrast. Objects differing only in their contrast with a background appear to be at different depths. The color of distant objects is also shifted toward the blue end of the spectrum. Some painters, notably Cézanne, employ "warm" pigments to bring features forward towards the viewer, and "cool" ones to indicate the part of a form that curves away from the picture plane.

Accommodation

Accommodation is an oculomotor cue for depth perception. When humans try to focus on distant objects, the ciliary muscles relax, allowing the eye lens to become thinner, which increases the focal length. Depth perception of distant objects is made possible by other methods besides accommodation. The kinesthetic sensations of the contracting and relaxing ciliary muscles are sent to the visual cortex where they are used for interpreting distance and depth. Accommodation is only effective for distances less than 2 meters.

Occultation

Occultation happens when near surfaces overlap far surfaces. If one object partially blocks the view of another object, humans perceive it as closer. However, this information only allows the observer to make a "ranking" of relative nearness. The presence of monocular ambient occlusions consist of the object's texture and geometry. These phenomena are able to reduce depth perception latency both in natural and artificial stimuli.

Curvilinear perspective

At the outer extremes of the visual field, parallel lines become curved, as in a photo taken through a fisheye lens. This effect, although it is usually eliminated from both art and photos by the cropping or framing of a picture, greatly enhances the viewer's sense of being positioned within a real, three-dimensional space.

Texture gradient

Fine details on nearby objects can be seen clearly, whereas such details are not visible on faraway objects. Texture gradients are the grains of an item. For example, on a long gravel road, the gravel near the observer can be clearly seen of shape, size and colour. In the distance, the road's texture cannot be clearly differentiated.

Lighting and shading

The way that light falls on an object and reflects off its surfaces, and the shadows that are cast by objects provide an effective cue for the brain to determine the shape of objects and their position in space.

Defocus blur

Selective image blurring is very commonly used in photography and video to establish the impression of depth. This can act as a monocular cue even when all other cues are removed. It may contribute to depth perception in natural retinal images, because the depth of focus of the human eye is limited. In addition, there are several depth estimation algorithms based on defocus and blurring. Some jumping spiders are known to use image defocus to judge depth.

Elevation

When an object is visible relative to the horizon, humans tend to perceive objects which are closer to the horizon as being farther away from them, and objects which are farther from the horizon as being closer to them. In addition, if an object moves from a position close to the horizon to a position higher or lower than the horizon, it will appear to move closer to the viewer.