Isoetes
Isoetes, commonly known as the quillworts, is a genus of lycopod. It is the only living genus in the family Isoetaceae and order Isoetales., there were about 200 recognized species, with a cosmopolitan distribution mostly in aquatic habitats but with the individual species often scarce to rare. Species virtually identical to modern quillworts have existed since the Jurassic epoch, though the timing of the origin of modern Isoetes is subject to considerable uncertainty.
The name of the genus may also be spelled Isoëtes. The diaeresis indicates that the o and the e are to be pronounced in two distinct syllables. Including this in print is optional; either spelling is correct.
Description
Quillworts are mostly aquatic or semi-aquatic in clear ponds and slow-moving streams, though several grow on wet ground that dries out in the summer. The quillworts are spore-producing plants and highly reliant on water dispersion. Quillworts have different ways to spread their spores based on the environment. Quillwort leaves are hollow and quill-like, with a minute ligule at the base of the upper surface. arising from a central corm. The sporangia are sunk deeply in the leaf bases. Each leaf will either have many small spores or fewer large spores. Both types of leaf are found on each plant. Each leaf is narrow, long and wide; they can be either evergreen, winter deciduous, or dry-season deciduous. Only 4% of total biomass, the tips of the leaves, is chlorophyllous.The roots broaden to a swollen base up to wide where they attach in clusters to a bulb-like, underground rhizome characteristic of most quillwort species, though a few form spreading mats. This swollen base also contains male and female sporangia, protected by a thin, transparent covering, which is used diagnostically to help identify quillwort species. They are heterosporous. Quillwort species are very difficult to distinguish by general appearance. The best way to identify them is by examining their megaspores under a microscope. Moreover, habitat, texture, spore size, and velum provide features that distinguish Isoëtes taxa. They also possess a vestigial form of secondary growth in the basal portions of its cormlike stem, an indication that they evolved from larger ancestors.
Biochemistry and genetics
Quillworts use crassulacean acid metabolism for carbon fixation. Some aquatic species do not have stomata and the leaves have a thick cuticle which prevents CO2 uptake, a task that is performed by their hollow roots instead, which absorb CO2 from the sediment. This has been studied extensively in Isoetes andicola. CAM is normally considered an adaptation to life in arid environments to prevent water loss with the plants opening their stomata at night rather than in the heat of the day. This allows CO2 to enter and minimises water loss. As mostly submerged aquatic plants, quillworts do not lack water and the use of CAM is considered to avoid competition with other aquatic plants for CO2 during daytime.The first detailed quillwort genome sequence, of I. taiwanensis, showed that there were differences from CAM in terrestrial plants. CAM involves the enzyme phosphoenolpyruvate carboxylase and plants have two forms of the enzyme. One is normally involved in photosynthesis and the other in central metabolism. From the genome sequence, it appears that in quillworts, both forms are involved in photosynthesis. In addition, circadian expression of key CAM pathway genes peaked at different times of day than in angiosperms. These fundamental differences in biochemistry suggest that CAM in quillworts is probably another example of convergent evolution of CAM during the more than 300 million years since the genus diverged from other plants. However, they may also be because of differences between life in water and in the air. The genome sequence also provided two insights into its structure. First, genes and repeated non-coding regions were fairly evenly distributed across all the chromosomes. This is similar to genomes of other non-seed plants, but different from the seed plants where there are distinctly more genes at the ends of chromosomes. Secondly, there was also evidence that the whole genome had been duplicated in the ancient past.
There are species that switch from CAM to C3 photosynthesis when they go from being submerged in water to living terrestrially, and develop stomata on their leaves. Some species, even under aerial conditions, rarely form stomata, and in some cases appear to have completely lost the ability to produce stomata.
Reproduction
Overview
Like all land plants, Isoetes undergoes an alternation of generations between a diploid sporophyte stage and a sexual haploid gametophyte stage. However, the dominance of one stage over the other has shifted over time. The development of vascular tissue and subsequent diversification of land plants coincides with the increased dominance of the sporophyte and reduction of the gametophyte. Isoetes, as members of the Lycopodiopsida class, are part of the oldest extant lineage that reflects this shift to a sporophyte dominant lifecycle. In closely related lineages, such as the extinct Lepidodendron, spores were dispersed by the sporophyte through large collections of sporangia called strobili for wind-based spore dispersal. However, Isoetes are small heterosporous semi-aquatic plants, with different reproductive needs and challenges than large tree-like land plants.Description
Like the rest of the Lycopodiopsida class, Isoetes reproduces with spores. Among the lycophytes, both Isoetes and the Selaginellaceae are heterosporous, while the remaining lycophyte family Lycopodiaceae is homosporous. As heterosporous plants, fertile Isoetes sporophytes produce megaspores and microspores, which develop in the megasporangia and microsporangia. These spores are highly ornate and are the primary way by which species are identified, although no one functional purpose of the intricate surface patterns is agreed upon. The megasporangia occur within the outermost microphylls of the plant while the microsporangia are found in the innermost microphylls. This pattern of development is hypothesized to improve the dispersal of the heavier megaspore. These spores then germinate and divide into mega- and micro- gametophytes. The microgametophytes have antheridia, which in turn produce sperm. The megagametophytes have archegonia, which produce egg cells. Fertilization takes place when the motile sperm from a microgametophyte locates the archegonia of a megagametophyte and swims inside to fertilize the egg.Outside of heterospory, a distinguishing feature of Isoetes from other pteridophytes, is that their gametophytes grow inside the spores. This means that the gametophytes never leave the protection of the spore that disperses them, cracking the perispore just enough to allow the passage of gametes. This is fundamentally different from ferns, where the gametophyte is a photosynthetic plant exposed to the elements of its environment. However, containment creates a separate problem for Isoetes, which is that the gametophytes have no way to acquire energy on their own. Isoetes sporophytes solve this problem by provisioning starches and other nutrients to the spores as an energy reserve for the eventual gametophytes. Although not a homologous process, this provisioning is somewhat analogous to other modes of offspring resource investment in seed-plants, such as fruits and seeds. The extent to which resources provisioned to the megaspore also support the growth of the new sporophyte is unknown in Isoetes.