Flying squirrel


Flying squirrels are a tribe of 50 species of squirrels in the family Sciuridae. Despite their name, they are not in fact capable of full flight in the same way as birds or bats, but they are able to glide from one tree to another with the aid of a patagium, a furred skin membrane that stretches from wrist to ankle. Their long tails also provide stability as they glide. Anatomically they are very similar to other squirrels with a number of adaptations to suit their lifestyle; their limb bones are longer and their hand bones, foot bones, and distal vertebrae are shorter. Flying squirrels are able to steer and exert control over their glide path with their limbs and tail.
Molecular studies have shown that flying squirrels are monophyletic and originated some 18–20 million years ago. The genus Paracitellus is the earliest lineage to the flying squirrel dating back to the late Oligocene era. Most are nocturnal and omnivorous, eating fruit, seeds, buds, flowers, insects, gastropods, spiders, fungi, bird's eggs, tree sap and young birds. The young are born in a nest and are at first naked and helpless. They are cared for by their mother and by five weeks are able to practice gliding skills so that by ten weeks they are ready to leave the nest.
Some captive-bred southern flying squirrels have become domesticated as small household pets, a type of "pocket pet".

Description

Flying squirrels are not capable of flight like birds or bats; instead, they glide between trees. They are capable of obtaining lift within the course of these flights, with flights recorded to. The direction and speed of the animal in midair are varied by changing the positions of its limbs, largely controlled by small cartilaginous wrist bones. There is a cartilage projection from the wrist that the squirrel holds upwards during a glide. This specialized cartilage is only present in flying squirrels and not other gliding mammals. Possible origins for the styliform cartilage have been explored, and the data suggests that it is most likely homologous to the carpal structures that can be found in other squirrels. This cartilage along with the manus forms a wing tip to be used during gliding. After being extended, the wing tip may adjust to various angles, controlling aerodynamic movements. The wrist also changes the tautness of the patagium, a furry parachute-like membrane that stretches from wrist to ankle. It has a fluffy tail that stabilizes in flight. The tail acts as an adjunct airfoil, working as an air brake before landing on a tree trunk.

Similar gliding animals

The colugos, Petauridae, and Anomaluridae are gliding mammals which are similar to flying squirrels through convergent evolution, although are not particularly close in relation. Like the flying squirrel, they are scansorial mammals that use their patagium to glide, unpowered, to move quickly through their environment.

Evolutionary history

Prior to the 21st century, the evolutionary history of the flying squirrel was frequently debated. This debate was clarified greatly as a result of two molecular studies. These studies found support that flying squirrels originated 18–20 million years ago, are monophyletic, and have a sister relationship with tree squirrels. Due to their close ancestry, the morphological differences between flying squirrels and tree squirrels reveal insight into the formation of the gliding mechanism. Compared to squirrels of similar size, flying squirrels, northern and southern flying squirrels show lengthening in bones of the lumbar vertebrae and forearm, whereas bones of the feet, hands, and distal vertebrae are reduced in length. Such differences in body proportions reveal the flying squirrels' adaptation to minimize wing loading and to increase maneuverability while gliding. The consequence for these differences is that unlike regular squirrels, flying squirrels are not well adapted for quadrupedal locomotion and therefore must rely more heavily on their gliding abilities.
Several hypotheses have attempted to explain the evolution of gliding in flying squirrels. One possible explanation is related to energy efficiency and foraging. Gliding is an energetically efficient way to progress from one tree to another while foraging, as opposed to climbing down trees and maneuvering on the ground floor or executing dangerous leaps in the air. By gliding at high speeds, flying squirrels can rummage through a greater area of forest more quickly than tree squirrels. Flying squirrels can glide long distances by increasing their aerial speed and increasing their lift.
Other hypotheses state that the mechanism evolved to avoid nearby predators and prevent injuries. If a dangerous situation arises on a specific tree, flying squirrels can glide to another, and thereby typically escape the previous danger. Furthermore, take-off and landing procedures during leaps, implemented for safety purposes, may explain the gliding mechanism. While leaps at high speeds are important to escape danger, the high-force impact of landing on a new tree could be detrimental to a squirrel's health. Yet the gliding mechanism of flying squirrels involves structures and techniques during flight that allow for great stability and control. If a leap is miscalculated, a flying squirrel may easily steer back onto the original course by using its gliding ability. A flying squirrel also creates a large glide angle when approaching its target tree, decreasing its velocity due to an increase in air resistance and allowing all four limbs to absorb the impact of the target.

Fluorescence

In 2019 it was observed, by chance, that a flying squirrel fluoresced pink under UV light. Subsequent research by biologists at Northland College in Northern Wisconsin found that this is true for all three species of North American flying squirrels. At this time it is unknown what purpose this serves. Non-flying squirrels do not fluoresce under UV light.

Taxonomy

Recent species

New World flying squirrels belong to the genus Glaucomys. Old World flying squirrels belong to the genus Pteromys.
The three species of the genus Glaucomys are native to North America and Central America; many other taxa are found throughout Asia as well, with the range of the Siberian Flying Squirrel reaching into parts of northeast Europe.
Thorington and Hoffman recognize 15 genera of flying squirrels in two subtribes.
Tribe Pteromyini – flying squirrels
The Mechuka, Mishmi Hills, and Mebo giant flying squirrels were discovered in the northeastern state of India of Arunachal Pradesh in the late 2000s. Their holotypes are preserved in the collection of the Zoological Survey of India, Kolkata, India.