Pseudoscience


Pseudoscience consists of statements, beliefs, or practices that claim to be scientific or factual but are inherently incompatible with the scientific method. Pseudoscience is often characterized by contradictory, exaggerated or unfalsifiable claims; reliance on confirmation bias rather than rigorous attempts at refutation; lack of openness to evaluation by other experts; absence of systematic practices when developing hypotheses; and continued adherence long after the pseudoscientific hypotheses have been experimentally discredited. It is not the same as junk science.
The demarcation between science and pseudoscience has scientific, philosophical, and political implications. Philosophers debate the nature of science and the general criteria for drawing the line between scientific theories and pseudoscientific beliefs, but there is widespread agreement "that creationism, astrology, homeopathy, Kirlian photography, dowsing, ufology, ancient astronaut theory, Holocaust denialism, Velikovskian catastrophism, and climate change denialism are pseudosciences." There are implications for health care, the use of expert testimony, and weighing environmental policies. Recent empirical research has shown that individuals who indulge in pseudoscientific beliefs generally show lower evidential criteria, meaning they often require significantly less evidence before coming to conclusions. This can be coined as a 'jump-to-conclusions' bias that can increase the spread of pseudoscientific beliefs. Addressing pseudoscience is part of science education and developing scientific literacy.
Pseudoscience can have dangerous effects. For example, pseudoscientific anti-vaccine activism and promotion of homeopathic remedies as alternative disease treatments can result in people forgoing important medical treatments with demonstrable health benefits, leading to ill-health and deaths. Furthermore, people who refuse legitimate medical treatments for contagious diseases may put others at risk. Pseudoscientific theories about racial and ethnic classifications have led to racism and genocide.
The term pseudoscience is often considered pejorative, because it suggests something is being presented as science inaccurately or even deceptively. Therefore, practitioners and advocates of pseudoscience frequently dispute the characterization.

Etymology

The word pseudoscience is derived from the Greek root pseudo meaning "false" and the English word science, from the Latin word scientia, meaning "knowledge". Although the term has been in use since at least the late 18th century, the concept of pseudoscience as distinct from real or proper science seems to have become more widespread during the mid-19th century. Among the earliest uses of "pseudo-science" was in an 1844 article in the Northern Journal of Medicine, issue 387:
An earlier use of the term was in 1843 by the French physiologist François Magendie, that refers to phrenology as "a pseudo-science of the present day". During the 20th century, the word was used pejoratively to describe explanations of phenomena which were claimed to be scientific, but which were not in fact supported by reliable experimental evidence.
From time to time, however, the usage of the word occurred in a more formal, technical manner in response to a perceived threat to individual and institutional security in a social and cultural setting.

Relationship to science

Pseudoscience is differentiated from science because – although it usually claims to be science – pseudoscience does not adhere to scientific standards, such as the scientific method, falsifiability of claims, and Mertonian norms.

Scientific method

A number of basic principles are accepted by scientists as standards for determining whether a body of knowledge, method, or practice is scientific. Experimental results should be reproducible and verified by other researchers. These principles are intended to ensure experiments can be reproduced measurably given the same conditions, allowing further investigation to determine whether a hypothesis or theory related to given phenomena is valid and reliable. Standards require the scientific method to be applied throughout, and bias to be controlled for or eliminated through randomization, fair sampling procedures, blinding of studies, and other methods. All gathered data, including the experimental or environmental conditions, are expected to be documented for scrutiny and made available for peer review, allowing further experiments or studies to be conducted to confirm or falsify results. Statistical quantification of significance, confidence, and error are also important tools for the scientific method.

Falsifiability

During the mid-20th century, the philosopher Karl Popper emphasized the criterion of falsifiability to distinguish science from non-science. Statements, hypotheses, or theories have falsifiability or refutability if there is the inherent possibility that they can be proven false, that is, if it is possible to conceive of an observation or an argument that negates them. Popper used astrology and psychoanalysis as examples of pseudoscience and Einstein's theory of relativity as an example of science. He subdivided non-science into philosophical, mathematical, mythological, religious and metaphysical formulations on one hand, and pseudoscientific formulations on the other.
Another example which shows the distinct need for a claim to be falsifiable was stated in Carl Sagan's publication The Demon-Haunted World when he discusses an invisible dragon that he has in his garage. The point is made that there is no physical test to refute the claim of the presence of this dragon. Whatever test one thinks can be devised, there is a reason why it does not apply to the invisible dragon, so one can never prove that the initial claim is wrong. Sagan concludes; "Now, what's the difference between an invisible, incorporeal, floating dragon who spits heatless fire and no dragon at all?". He states that "your inability to invalidate my hypothesis is not at all the same thing as proving it true", once again explaining that even if such a claim were true, it would be outside the realm of scientific inquiry.

Mertonian norms

During 1942, Robert K. Merton identified a set of five "norms" which characterize real science. If any of the norms were violated, Merton considered the enterprise to be non-science. His norms were:
  • Originality: The tests and research done must present something new to the scientific community.
  • Detachment: The scientists' reasons for practicing this science must be simply for the expansion of their knowledge. The scientists should not have personal reasons to expect certain results.
  • Universality: No person should be able to more easily obtain the information of a test than another person. Social class, religion, ethnicity, or any other personal factors should not be factors in someone's ability to receive or perform a type of science.
  • Skepticism: Scientific facts must not be based on faith. One should always question every case and argument and constantly check for errors or invalid claims.
  • Public accessibility: Any scientific knowledge one obtains should be made available to everyone. The results of any research should be published and shared with the scientific community.

    Refusal to acknowledge problems

In 1978, Paul Thagard proposed that pseudoscience is primarily distinguishable from science when it is less progressive than alternative theories over a long period of time, and its proponents fail to acknowledge or address problems with the theory. In 1983, Mario Bunge suggested the categories of "belief fields" and "research fields" to help distinguish between pseudoscience and science, where the former is primarily personal and subjective and the latter involves a certain systematic method. The 2018 book about scientific skepticism by Steven Novella, et al. The Skeptics' Guide to the Universe lists hostility to criticism as one of the major features of pseudoscience.

Criticism of the term

has suggested pseudoscience has no scientific meaning and is mostly used to describe human emotions: "If we would stand up and be counted on the side of reason, we ought to drop terms like 'pseudo-science' and 'unscientific' from our vocabulary; they are just hollow phrases which do only emotive work for us". Likewise, Richard McNally states, "The term 'pseudoscience' has become little more than an inflammatory buzzword for quickly dismissing one's opponents in media sound-bites" and "When therapeutic entrepreneurs make claims on behalf of their interventions, we should not waste our time trying to determine whether their interventions qualify as pseudoscientific. Rather, we should ask them: How do you know that your intervention works? What is your evidence?"

Alternative definition

For philosophers Silvio Funtowicz and Jerome R. Ravetz "pseudo-science may be defined as one where the uncertainty of its inputs must be suppressed, lest they render its outputs totally indeterminate". The definition, in the book Uncertainty and Quality in Science for Policy, alludes to the loss of craft skills in handling quantitative information, and to the bad practice of achieving precision in prediction only at the expenses of ignoring uncertainty in the input which was used to formulate the prediction. This use of the term is common among practitioners of post-normal science. Understood in this way, pseudoscience can be fought using good practices to assess uncertainty in quantitative information, such as NUSAP and – in the case of mathematical modelling – sensitivity auditing.

History

The history of pseudoscience is the study of pseudoscientific theories over time. A pseudoscience is a set of ideas that presents itself as science, while it does not meet the criteria to be properly called such.
Distinguishing between proper science and pseudoscience is sometimes difficult. One proposal for demarcation between the two is the falsification criterion, attributed most notably to the philosopher Karl Popper. In the history of science and the history of pseudoscience it can be especially difficult to separate the two, because some sciences developed from pseudosciences. An example of this transformation is the science of chemistry, which traces its origins to the pseudoscientific or pre-scientific study of alchemy.
The vast diversity in pseudosciences further complicates the history of science. Some modern pseudosciences, such as astrology and acupuncture, originated before the scientific era. Others developed as part of an ideology, such as Lysenkoism, or as a response to perceived threats to an ideology. Examples of this ideological process are creation science and intelligent design, which were developed in response to the scientific theory of evolution.