Probability plot correlation coefficient plot
The probability plot correlation coefficient plot is a graphical technique for identifying the shape parameter for a distributional family that best describes the data set. This technique is appropriate for families, such as the Weibull or the generalized Gaussian distribution, that are defined by a single shape parameter and location and scale parameters, and it is not appropriate or even possible for distributions, such as the normal, that are defined only by location and scale parameters.
Many statistical analyses are based on distributional assumptions about the population from which the data have been obtained. However, distributional families can have radically different shapes depending on the value of the shape parameter. Therefore, finding a reasonable choice for the shape parameter is a necessary step in the analysis. In many analyses, finding a good distributional model for the data is the primary focus of the analysis.
The technique is simply "plot the probability plot correlation coefficients for different values of the shape parameter, and choose whichever value yields the best fit".
Definition
The PPCC plot is formed by:- Vertical axis: Probability plot correlation coefficient;
- Horizontal axis: Value of shape parameter.
The PPCC plot is used first to find a good value of the shape parameter. The probability plot is then generated to find estimates of the location and scale parameters and in addition to provide a graphical assessment of the adequacy of the distributional fit.
The PPCC plot answers the following questions:
- What is the best-fit member within a distributional family?
- Does the best-fit member provide a good fit ?
- Does this distributional family provide a good fit compared to other distributions?
- How sensitive is the choice of the shape parameter?
Comparing distributions
When comparing distributional models, one should not simply choose the one with the maximum PPCC value. In many cases, several distributional fits provide comparable PPCC values. For example, a lognormal and Weibull may both fit a given set of reliability data quite well. Typically, one would consider the complexity of the distribution. That is, a simpler distribution with a marginally smaller PPCC value may be preferred over a more complex distribution. Likewise, there may be theoretical justification in terms of the underlying scientific model for preferring a distribution with a marginally smaller PPCC value in some cases. In other cases, one may not need to know if the distributional model is optimal, only that it is adequate for our purposes. That is, one may be able to use techniques designed for normally distributed data even if other distributions fit the data somewhat better.
Tukey-lambda PPCC plot for symmetric distributions
The Tukey lambda PPCC plot, with shape parameter λ, is particularly useful for symmetric distributions. It indicates whether a distribution is short or long tailed and it can further indicate several common distributions. Specifically,- λ = −1: distribution is approximately Cauchy
- λ = 0: distribution is exactly logistic
- λ = 0.14: distribution is approximately normal
- λ = 0.5: distribution is U-shaped
- λ = 1: distribution is exactly uniform
The Tukey-lambda PPCC plot is used to suggest an appropriate distribution. One should follow-up with PPCC and probability plots of the appropriate alternatives.