Electric power system


An electric power system is a network of electrical components deployed to supply, transfer, and use electric power. An example of a power system is the electrical grid that provides power to homes and industries within an extended area. The electrical grid can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centers to the load centers, and the distribution system that feeds the power to nearby homes and industries.
Smaller power systems are also found in industry, hospitals, commercial buildings, and homes. A single line diagram helps to represent this whole system. The majority of these systems rely upon three-phase AC power—the standard for large-scale power transmission and distribution across the modern world. Specialized power systems that do not always rely upon three-phase AC power are found in aircraft, electric rail systems, ocean liners, submarines, and automobiles.

History

In 1889, two electricians built the world's first power system at Godalming in England. It was powered by two water wheels and produced an alternating current that in turn supplied seven Siemens arc lamps at 250 volts and 34 incandescent lamps at 40 volts. However, supply to the lamps was intermittent and in 1882 Thomas Edison and his company, Edison Electric Light Company, developed the first steam-powered electric power station on Pearl Street in New York City. The Pearl Street Station initially powered around 3,000 lamps for 59 customers. The power station generated direct current and operated at a single voltage. Direct current power could not be transformed easily or efficiently to the higher voltages necessary to minimize power loss during long-distance transmission, so the maximum economic distance between the generators and load was limited to around half a mile.
That same year in London, Lucien Gaulard and John Dixon Gibbs demonstrated the "secondary generator"—the first transformer suitable for use in a real power system. The practical value of Gaulard and Gibbs' transformer was demonstrated in 1884 at Turin where the transformer was used to light up of railway from a single alternating current generator. Despite the success of the system, the pair made some fundamental mistakes. Perhaps the most serious was connecting the primaries of the transformers in series so that active lamps would affect the brightness of other lamps further down the line.
In 1885, Ottó Titusz Bláthy working with Károly Zipernowsky and Miksa Déri perfected the secondary generator of Gaulard and Gibbs, providing it with a closed iron core and its present name: the "transformer". The three engineers went on to present a power system at the National General Exhibition of Budapest that implemented the parallel AC distribution system proposed by a British scientist in which several power transformers have their primary windings fed in parallel from a high-voltage distribution line. The system lit more than 1000 carbon filament lamps and operated successfully from May until November of that year.
Also in 1885 George Westinghouse, an American entrepreneur, obtained the patent rights to the Gaulard-Gibbs transformer and imported a number of them along with a Siemens generator, and set his engineers to experimenting with them in hopes of improving them for use in a commercial power system. In 1886, one of Westinghouse's engineers, William Stanley, independently recognized the problem with connecting transformers in series as opposed to parallel and also realized that making the iron core of a transformer a fully enclosed loop would improve the voltage regulation of the secondary winding. Using this knowledge he built a multi-voltage transformer-based alternating-current power system serving multiple homes and businesses at Great Barrington, Massachusetts in 1886. The system was unreliable and short-lived, though, due primarily to generation issues. However, based on that system, Westinghouse would begin installing AC transformer systems in competition with the Edison Company later that year. In 1888, Westinghouse licensed Nikola Tesla's patents for a polyphase AC induction motor and transformer designs. Tesla consulted for a year at the Westinghouse Electric & Manufacturing Company but it took a further four years for Westinghouse engineers to develop a workable polyphase motor and transmission system.
By 1889, the electric power industry was flourishing, and power companies had built thousands of power systems in the United States and Europe. These networks were effectively dedicated to providing electric lighting. During this time the rivalry between Thomas Edison and George Westinghouse's companies had grown into a propaganda campaign over which form of transmission was superior, a series of events known as the "war of the currents". In 1891, Westinghouse installed the first major power system that was designed to drive a synchronous electric motor, as well as provide electric lighting, at Telluride, Colorado. On the other side of the Atlantic, Mikhail Dolivo-Dobrovolsky and Charles Eugene Lancelot Brown, built the first long-distance high-voltage three-phase transmission line from Lauffen am Neckar to Frankfurt am Main for the Electrical Engineering Exhibition in Frankfurt, where power was used to light lamps and run a water pump. In the United States the AC/DC competition came to an end when Edison General Electric was taken over by their chief AC rival, the Thomson-Houston Electric Company, forming General Electric. In 1895, after a protracted decision-making process, alternating current was chosen as the transmission standard with Westinghouse building the Adams No. 1 generating station at Niagara Falls and General Electric building the three-phase alternating current power system to supply Buffalo at 11 kV.
Developments in power systems continued beyond the nineteenth century. In 1936 the first experimental high voltage direct current line using mercury arc valves was built between Schenectady and Mechanicville, New York. HVDC had previously been achieved by series-connected direct current generators and motors although this suffered from serious reliability issues. The first solid-state metal diode suitable for general power uses was developed by Ernst Presser at TeKaDe in 1928. It consisted of a layer of selenium applied on an aluminum plate.
In 1957, a General Electric research group developed the first thyristor suitable for use in power applications, starting a revolution in power electronics. In that same year, Siemens demonstrated a solid-state rectifier, but it was not until the early 1970s that solid-state devices became the standard in HVDC, when GE emerged as one of the top suppliers of thyristor-based HVDC.
In 1979, a European consortium including Siemens, Brown Boveri & Cie and AEG realized the record HVDC link from Cabora Bassa to Johannesburg, extending more than that carried 1.9 GW at 533 kV.
In recent times, many important developments have come from extending innovations in the information and communications technology field to the power engineering field. For example, the development of computers meant load flow studies could be run more efficiently, allowing for much better planning of power systems. Advances in information technology and telecommunication also allowed for effective remote control of a power system's switchgear and generators.

Basics of electric power

Electric power is the product of two quantities: current and voltage. These two quantities can vary with respect to time or can be kept at constant levels.
Most refrigerators, air conditioners, pumps and industrial machinery use AC power, whereas most computers and digital equipment use DC power. AC power has the advantage of being easy to transform between voltages and is able to be generated and utilised by brushless machinery. DC power remains the only practical choice in digital systems and can be more economical to transmit over long distances at very high voltages.
The ability to easily transform the voltage of AC power is important for two reasons: firstly, power can be transmitted over long distances with less loss at higher voltages. So in power systems where generation is distant from the load, it is desirable to step-up the voltage of power at the generation point and then step-down the voltage near the load. Secondly, it is often more economical to install turbines that produce higher voltages than would be used by most appliances, so the ability to easily transform voltages means this mismatch between voltages can be easily managed.
Solid-state devices, which are products of the semiconductor revolution, make it possible to transform DC power to different voltages, build brushless DC machines and convert between AC and DC power. Nevertheless, devices utilising solid-state technology are often more expensive than their traditional counterparts, so AC power remains in widespread use.

Components of power systems

Supplies

All power systems have one or more sources of power. For some power systems, the source of power is external to the system but for others, it is part of the system itself—it is these internal power sources that are discussed in the remainder of this section. Direct current power can be supplied by batteries, fuel cells or photovoltaic cells. Alternating current power is typically supplied by a rotor that spins in a magnetic field in a device known as a turbo generator. There have been a wide range of techniques used to spin a turbine's rotor, from steam heated using fossil fuel or nuclear energy to falling water and wind.
The speed at which the rotor spins in combination with the number of generator poles determines the frequency of the alternating current produced by the generator. All generators on a single synchronous system, for example, the national grid, rotate at sub-multiples of the same speed and so generate electric current at the same frequency. If the load on the system increases, the generators will require more torque to spin at that speed and, in a steam power station, more steam must be supplied to the turbines driving them. Thus the steam used and the fuel expended directly relate to the quantity of electrical energy supplied. An exception exists for generators incorporating power electronics such as gearless wind turbines or linked to a grid through an asynchronous tie such as a HVDC link — these can operate at frequencies independent of the power system frequency.
Depending on how the poles are fed, alternating current generators can produce a variable number of phases of power. A higher number of phases leads to more efficient power system operation but also increases the infrastructure requirements of the system. Electricity grid systems connect multiple generators operating at the same frequency: the most common being three-phase at 50 or 60 Hz.
There are a range of design considerations for power supplies. These range from the obvious: How much power should the generator be able to supply? What is an acceptable length of time for starting the generator ? Is the availability of the power source acceptable ? To the more technical: How should the generator start ? What is the mechanical speed of operation for the turbine and consequently what are the number of poles required? What type of generator is suitable and what type of rotor ?