Post-perovskite
Post-perovskite is a high-pressure phase of magnesium silicate. It is composed of the prime oxide constituents of the Earth's rocky mantle, and its pressure and temperature for stability imply that it is likely to occur in portions of the lowermost few hundred km of Earth's mantle.
The post-perovskite phase has implications for the D′′ layer, which influences the convective mixing in the mantle responsible for plate tectonics.
Post-perovskite has the same crystal structure as the synthetic solid compound CaIrO3 , and is often referred to as the "CaIrO3-type phase of MgSiO3" in the literature. The crystal system of post-perovskite is orthorhombic, its space group is Cmcm, and its structure is a stacked SiO6-octahedral sheet along the b axis. The name "post-perovskite" derives from silicate perovskite, the stable phase of MgSiO3 throughout most of Earth's mantle, which has the perovskite structure. The prefix "post-" refers to the fact that it occurs after perovskite structured MgSiO3 as pressure increases. At upper mantle pressures, nearest Earth's surface, MgSiO3 persists as the silicate mineral enstatite, a pyroxene rock forming mineral found in igneous and metamorphic rocks of the crust.
History
The CaIrO3-type phase of MgSiO3 phase was discovered in 2004 using the laser-heated diamond anvil cell technique by a group at the Tokyo Institute of Technology and, independently, by researchers from the Swiss Federal Institute of Technology and Japan Agency for Marine-Earth Science and Technology who used a combination of quantum-mechanical simulations and LHDAC experiments. The TIT group's paper appeared in the journal Science. The ETH/JAM-EST collaborative paper and TIT group's second paper appeared two months later in the journal Nature. This simultaneous discovery was preceded by S. Ono's experimental discovery of a similar phase, possessing exactly the same structure, in Fe2O3.Importance in Earth's mantle
Post-perovskite phase is stable above 120 GPa at 2500 K, and exhibits a positive Clapeyron slope such that the transformation pressure increases with temperature. Because these conditions correspond to a depth of about 2600 km and the D" seismic discontinuity occurs at similar depths, the perovskite to post-perovskite phase change is considered to be the origin of such seismic discontinuities in this region. Post-perovskite also holds great promise for mapping experimentally determined information regarding the temperatures and pressures of its transformation into direct information regarding temperature variations in the D" layer once the seismic discontinuities attributed to this transformation have been sufficiently mapped out. Such information can be used, for example, to:For these reasons the finding of the MgSiO3-post-perovskite phase transition is considered by many geophysicists to be the most important discovery in deep Earth science in several decades, and was only made possible by the concerted efforts of mineral physics scientists around the world as they sought to increase the range and quality of LHDAC experiments and as ab initio calculations attained predictive power.
Physical properties
The sheet structure of post-perovskite makes the compressibility of the b axis higher than that of the a or c axis. This anisotropy may yield the morphology of a platy crystal habit parallel to the plane; the seismic anisotropy observed in the D" region might qualitatively be explained by this characteristic. Theory predicted the slip associated with particularly favorable stacking faults and confirmed by later experiments. Some theorists predicted other slip systems, which await experimental confirmation.In 2005 and 2006 Ono and Oganov published two papers predicting that post-perovskite should have high electrical conductivity, perhaps two orders of magnitude higher than perovskite's conductivity. In 2008 Hirose's group published an experimental report confirming this prediction. A highly conductive post-perovskite layer provides an explanation for the observed decadal variations of the length of day.