Long-period tides
Long-period tides or low-frequency tides are gravitational tides with periods longer than one day or frequencies lower than one cycle per day. They typically have amplitudes of a few centimeters or less.
Long-period tidal constituents with relatively strong forcing include the lunar fortnightly and lunar monthly as well as the solar semiannual and solar annual constituents.
An analysis of the changing distance of the Earth relative to Sun, Moon, and Jupiter by Pierre-Simon de Laplace in the 18th century showed that the periods at which gravity varies cluster into three species: the semi-diurnal and the diurnal tide constituents, which have periods of a day or less, and the long-period tidal constituents.
In addition to having periods longer than a day, long-period tidal forcing is distinguished from that of the first and second species by being zonally symmetric. The long period tides are also distinguished by the way in which the oceans respond: forcings occur sufficiently slowly that they do not excite surface gravity waves. The excitation of surface gravity waves is responsible for the high amplitude semi-diurnal tides in the Bay of Fundy, for example. In contrast, the ocean responds to long period tidal forcing with a combination of an equilibrium tide along with a possible excitation of barotropic Rossby wave normal modes
Formation mechanism
Gravitational tides are caused by changes in the relative location of the Earth, Sun, and Moon, whose orbits are perturbed slightly by Jupiter. Newton's law of universal gravitation states that the gravitational force between a mass at a reference point on the surface of the Earth and another object such as the Moon is inversely proportional to the square of the distance between them. The declination of the Moon relative to the Earth means that, as the Moon orbits the Earth, during half the lunar cycle the Moon is closer to the Northern Hemisphere, and during the other half the Moon is closer to the Southern Hemisphere. This periodic shift in distance gives rise to the lunar fortnightly tidal constituent. The ellipticity of the lunar orbit gives rise to a lunar monthly tidal constituent. Because of the nonlinear dependence of the force on distance, additional tidal constituents exist with frequencies which are the sum and differences of these fundamental frequencies. Additional fundamental frequencies are introduced by the motion of the Sun and Jupiter, thus tidal constituents exist at all of these frequencies as well as all of the sums and differences of these frequencies, etc. The mathematical description of the tidal forces is greatly simplified by expressing the forces in terms of gravitational potentials. Because the Earth is approximately a sphere and the orbits are approximately circular it also turns out to be very convenient to describe these gravitational potentials in spherical coordinates using spherical harmonic expansions.Oceanic response
Several factors need to be considered in order to determine the ocean's response to tidal forcing. These include loading effects and interactions with the solid Earth as the ocean mass is redistributed by the tides, and self-gravitation effects of the ocean on itself. However the most important is the dynamical response of the ocean to the tidal forcing, conveniently expressed in terms of Laplace's tidal equations. Because of their long periods, surface gravity waves cannot be easily excited, and so the long period tides were long assumed to be nearly in equilibrium with the forcing, in which case the tide heights should be proportional to the disturbing potential and the induced currents should be very weak. Thus it came as a surprise when in 1967 Carl Wunsch published the tide heights for two constituents in the tropical Pacific with distinctly nonequilibrium tides. More recently there has been confirmation from satellite sea level measurements of the nonequilibrium nature of the lunar fortnightly tide, for example in the tropical Atlantic. Similar calculations for the lunar monthly tide show that this lower frequency constituent is closer to equilibrium than the fortnightly.A number of ideas have been put forward regarding how the ocean should respond to long period tidal forcing. Several authors in the 1960s and 1970s had suggested that the tidal forcing might generate resonant barotropic Rossby Wave modes, however these modes are extremely sensitive to ocean dissipation and in any event are only weakly excited by the long period tidal forcing. Another idea was that long period Kelvin Waves could be excited. More recently Egbert and Ray presented numerical modeling results suggesting that the nonequilibrium tidal elevation of the lunar fortnightly is more closely connected to the exchange of mass between the ocean basins.