Bacillus cereus


Bacillus cereus is a Gram-positive rod-shaped bacterium commonly found in soil, food, and marine sponges. The specific name, cereus, meaning "waxy" in Latin, refers to the appearance of colonies grown on blood agar. Some strains are harmful to humans and cause foodborne illness due to their spore-forming nature, while other strains can be beneficial as probiotics for animals, and even exhibit mutualism with certain plants. B. cereus bacteria may be aerobes or facultative anaerobes, and like other members of the genus Bacillus, can produce protective endospores. They have a wide range of virulence factors, including phospholipase C, cereulide, sphingomyelinase, metalloproteases, and cytotoxin K, many of which are regulated via quorum sensing. B. cereus strains exhibit flagellar motility.
The Bacillus cereus group comprises seven closely related species: B. cereus ''sensu stricto, B. anthracis, B. thuringiensis, B. mycoides, B. pseudomycoides, and B. cytotoxicus; or as six species in a Bacillus cereus sensu lato: B. weihenstephanensis, B. mycoides, B. pseudomycoides, B. cereus, B. thuringiensis, and B. anthracis. A phylogenomic analysis combined with average nucleotide identity analysis revealed that the B. anthracis species also includes strains annotated as B. cereus and B. thuringiensis.''

History

Colonies of B. cereus were originally isolated by Percy F. Frankland from a gelatine plate left exposed to the air in a cow shed in 1887. In the 2010s, examination of warning letters issued by the US Food and Drug Administration issued to pharmaceutical manufacturing facilities addressing facility microbial contamination revealed that the most common contaminant was B. cereus.
Several new enzymes have been discovered in B. cereus, such as AlkC and AlkD, both of which are involved in DNA repair.

Microbiology

B. cereus is a rod-shaped bacterium with a Gram-positive cell envelope. Depending on the strain, it may be aerobic or facultatively anaerobic. Most strains are mesophilic, having an optimal temperature between 25 °C and 37 °C, and neutralophilic, preferring neutral pH, but some have been found to grow in environments with much more extreme conditions.
These bacteria are both spore-forming and biofilm-forming, presenting a large challenge to the food industry due to their contamination capability. Biofilms of B. cereus most commonly form on air-liquid interfaces or on hard surfaces such as glass. B. cereus display flagellar motility, which has been shown to aid in biofilm formation via an increased ability to reach surfaces suitable for biofilm formation, to spread the biofilm over a larger surface area, and to recruit planktonic, or single, free-living bacteria. Biofilm formation may also occur while in spore form due to varying adhesion ability of spores.
Their flagella are peritrichous, meaning there are many flagella located all around the cell body that can bundle together at a single location on the cell to propel it. This flagellar property also allows the cell to change directions of movement depending on where on the cell the flagellum filaments come together to generate movement.
Some studies and observations have shown that silica particles the size of a few nanometers have been deposited in a spore coat layer in the extracytoplasmic region of the Bacillus cereus spore. The layer was first discovered by the use of scanning transmission electron microscopy, however the images taken did not have resolution high enough to determine the precise location of the silica. Some investigators hypothesize that the layer helps different spores from sticking together. It has also been shown to provide some resistance to acidic environments. The silica coat is related to the permeability of the spore's inner membrane. Strong mineral acids are able to break down spore permeability barriers and kill the spore. However, when the spore has a silica coating, it may reduce the permeability of the membrane and provide resistance to many acids.

Metabolism

Bacillus cereus has mechanisms for both aerobic and anaerobic respiration, making it a facultative anaerobe. Its aerobic pathway consists of three terminal oxidases: cytochrome aa3, cytochrome caa3, and cytochrome bd, the use of each dependent on the amount of oxygen present in the environment. The B. cereus genome encodes genes for metabolic enzymes including NADH dehydrogenases, succinate dehydrogenase, complex III, and cytochrome c oxidase, as well as others. Bacillus cereus can metabolize several different compounds to create energy, including carbohydrates, proteins, peptides, and amino acids.
The Embden-Meyerhof pathway is the predominant pathway used by Bacillus cereus to catabolize glucose at every stage of the cell's development, according to estimates of a radiorespirometric method of glucose catabolism. This is true at times of germinative phases, as well as sporogenic phases. At the filamentous, granular, forespore, and transitional stages, the Embden-Meyerhof pathway was responsible for the catabolism of 98% of the cell's glucose. The remainder of the glucose was catabolized by the hexose monophosphate oxidative pathway.
Analysis of the core genome of B. cereus reveals a limited presence of enzymes meant for breakdown of polysaccharides and a prevalence of proteases and amino acid degradation and transport pathways, indicating that their preferred diet consists of proteins and their breakdown products.
An isolate of a bacterium found to produce PHBs was identified as B. cereus through analysis of 16S rRNA sequences as well as similarity of morphological and biochemical characteristics. PHBs may be produced when there is excess carbon or limited essential nutrients present in the environment, and they are later broken down by the microbe as a fuel source under starvation conditions. This indicates the potential role of B. cereus in producing biodegradable plastic substitutes. PHB production was highest when provided with glucose as a carbon source.

Genomics

The genome of B. cereus has been characterized and shown to contain over 5 million bp of DNA. Out of these, more than 5500 protein-encoding genes have been identified, of which the top categories of genes with known functions include: metabolic processes, processing of proteins, virulence factors, response to stress, and defense mechanisms. Many of the genes categorized as virulence factors, stress responses, and defense mechanisms encode factors in antibiotic resistance. There are approximately 600 genes which are common in 99% of the taxa of B. cereus sensu lato, which constitutes around 1% of all genes in the pan-genome. Due to the prevalence of horizontal gene transfer among bacteria, the pan-genome of B. cereus is continually expanding. The GC content of its DNA across all strains is approximately 35%.
Following exposure to non-lethal acid shock at pH 5.4-5.5, the arginine deiminase gene in B. cereus, arcA, shows substantial up-regulation. This gene is part of the arcABC operon which is induced by low-pH environments in Listeria monocytogenes, and is associated with growth and survival in acidic environments. This suggests that this gene is also important for survival of B. cereus in acidic environments.
The activation of virulence factors has been shown to be transcriptionally regulated via quorum-sensing in B. cereus. The activation of many virulence factors secreted is dependent on the activity of the Phospholipase C regulator, a transcriptional regulator which is most active at the beginning of the stationary phase of growth. A small peptide called PapR acts as the effector in the quorum-sensing pathway, and when reimported into the cell, it interacts with PlcR to activate transcription of these virulence genes. When point mutations were introduced into the plcR gene using the CRISPR/Cas9 system, it was observed that the mutated bacteria lost their hemolytic and phospholipase activity.
The flagella of B. cereus are encoded by 2 to 5 fla genes, depending on the strain.

Identification

For the isolation and enumeration of B. cereus, there are two standardized methods by International Organization for Standardization : ISO 7932 and ISO 21871. Because of B. cereus ability to produce lecithinase and its inability to ferment mannitol, there are some proper selective media for its isolation and identification such as mannitol-egg yolk-polymyxin and polymyxin-pyruvate-egg yolk-mannitol-bromothymol blue agar. B. cereus colonies on MYP have a violet-red background and are surrounded by a zone of egg-yolk precipitate.
Below is a list of differential techniques and results that can help to identify B. cereus from other bacteria and Bacillus species.
  • Anaerobic growth: Positive
  • Voges Proskauer test: Positive
  • Acid produced from
  • * -glucose: Positive
  • * -arabinose: Negative
  • * -xylose: Negative
  • * -mannitol: Negative
  • Starch hydrolysis: Positive
  • Nitrate reduction: Positive
  • Degradation of tyrosine: Positive
  • Growth at
  • * above 50 °C: Negative
  • Use of citrate: Positive
The Central Public Health Laboratory in the United Kingdom tests for motility, hemolysis, rhizoid growth, susceptibility to γ-phage, and fermentation of ammonium salt-based glucose but no mannitol, arabinose, or xylose.

Growth

The optimal growth temperature range for B. cereus is 30-40 °C. At, a population of B. cereus can double in as little as 20 minutes or as long as 3 hours, depending on the food product. Spores of B. cereus are not metabolically active, but can rapidly become active and begin replicating once they encounter adequate growth conditions.
FoodMinutes to double, Hours to multiply by 1,000,000
Milk20–36
Cooked rice26–31
Infant formula56