Sandstone


Sandstone is a clastic sedimentary rock composed mainly of sand-sized silicate grains, cemented together by another mineral. Sandstones comprise about 20-25% of all sedimentary rocks.
Most sandstone is composed of quartz or feldspar because they are the most resistant minerals to the weathering processes at the Earth's surface. Like uncemented sand, sandstone may be imparted any color by impurities within the minerals, but the most common colors are tan, brown, yellow, red, grey, pink, white, and black. Because sandstone beds can form highly visible cliffs and other topographic features, certain colors of sandstone have become strongly identified with certain regions, such as the red rock deserts of Arches National Park and other areas of the American Southwest.
Rock formations composed of sandstone usually allow the percolation of water and other fluids and are porous enough to store large quantities, making them valuable aquifers and petroleum reservoirs.
Quartz-bearing sandstone can be changed into quartzite through metamorphism, usually related to tectonic compression within orogenic belts.

Origins

Sandstones are clastic in origin. The silicate sand grains from which they form are the product of physical and chemical weathering of bedrock. Weathering and erosion are most rapid in areas of high relief, such as volcanic arcs, areas of continental rifting, and orogenic belts.
Eroded sand is transported by rivers or by the wind from its source areas to depositional environments where tectonics has created accommodation space for sediments to accumulate. Forearc basins tend to accumulate sand rich in lithic grains and plagioclase. Intracontinental basins and grabens along continental margins are also common environments for deposition of sand.
As sediments continue to accumulate in the depositional environment, older sand is buried by younger sediments, and it undergoes diagenesis. This mostly consists of compaction and lithification of the sand. Early stages of diagenesis, described as eogenesis, take place at shallow depths and are characterized by bioturbation and mineralogical changes in the sands, with only slight compaction. The red hematite that gives red bed sandstones their color is likely formed during eogenesis. Deeper burial is accompanied by mesogenesis, during which most of the compaction and lithification takes place.
Compaction takes place as the sand comes under increasing pressure from overlying sediments. Sediment grains move into more compact arrangements, ductile grains are deformed, and pore space is reduced. In addition to this physical compaction, chemical compaction may take place via pressure solution. Points of contact between grains are under the greatest strain, and the strained mineral is more soluble than the rest of the grain. As a result, the contact points are dissolved away, allowing the grains to come into closer contact.
Lithification follows closely on compaction, as increased temperatures at depth hasten deposition of cement that binds the grains together. Pressure solution contributes to cementing, as the mineral dissolved from strained contact points is redeposited in the unstrained pore spaces.
Mechanical compaction takes place primarily at depths less than. Chemical compaction continues to depths of, and most cementation takes place at depths of.
Unroofing of buried sandstone is accompanied by telogenesis, the third and final stage of diagenesis. As erosion reduces the depth of burial, renewed exposure to meteoric water produces additional changes to the sandstone, such as dissolution of some of the cement to produce secondary porosity.

Components

Framework grains

Framework grains are sand-sized detrital fragments that make up the bulk of a sandstone. Most framework grains are composed of quartz or feldspar, which are the common minerals most resistant to weathering processes at the Earth's surface, as seen in the Goldich dissolution series. Framework grains can be classified into several different categories based on their mineral composition:
  • Quartz framework grains are the dominant minerals in most clastic sedimentary rocks; this is because they have exceptional physical properties, such as hardness and chemical stability. These physical properties allow the quartz grains to survive multiple recycling events, while also allowing the grains to display some degree of rounding. Quartz grains evolve from plutonic rock, which are felsic in origin and also from older sandstones that have been recycled.
  • Feldspathic framework grains are commonly the second most abundant mineral in sandstones. Feldspar can be divided into alkali feldspars and plagioclase feldspars, which can be distinguished under a petrographic microscope.
File:LvMS-Lvm.jpg|thumb|Photomicrograph of a volcanic sand grain; upper picture is plane-polarised light, bottom picture is cross-polarised light, scale box at left-centre is 0.25 millimeter. This type of grain would be a main component of a lithic sandstone.
  • Lithic framework grains are pieces of ancient source rock that have yet to weather away to individual mineral grains. Lithic fragments can be any fine-grained or coarse-grained igneous, metamorphic, or sedimentary rock, although the most common lithic fragments found in sedimentary rocks are clasts of volcanic rocks.
  • Accessory minerals are all other mineral grains in a sandstone. These minerals usually make up just a small percentage of the grains in a sandstone. Common accessory minerals include micas, olivine, pyroxene, and corundum. Many of these accessory grains are more dense than the silicates that make up the bulk of the rock. These heavy minerals are commonly resistant to weathering and can be used as an indicator of sandstone maturity through the ZTR index. Common heavy minerals include zircon, tourmaline, rutile, garnet, magnetite, or other dense, resistant minerals derived from the source rock.

    Matrix

is very fine material, which is present within interstitial pore space between the framework grains. The nature of the matrix within the interstitial pore space results in a twofold classification:
  • Arenites are texturally clean sandstones that are free of or have very little matrix.
  • Wackes are texturally dirty sandstones that have a significant amount of matrix.

    Cement

Cement is what binds the siliciclastic framework grains together. Cement is a secondary mineral that forms after deposition and during burial of the sandstone. These cementing materials may be either silicate minerals or non-silicate minerals, such as calcite.
  • Silica cement can consist of either quartz or opal minerals. Quartz is the most common silicate mineral that acts as cement. In sandstone where there is silica cement present, the quartz grains are attached to cement, which creates a rim around the quartz grain called overgrowth. The overgrowth retains the same crystallographic continuity of quartz framework grain that is being cemented. Opal cement is found in sandstones that are rich in volcanogenic materials, and very rarely is in other sandstones.
  • Calcite cement is the most common carbonate cement. Calcite cement is an assortment of smaller calcite crystals. The cement adheres to the framework grains, cementing the framework grains together.
  • Other minerals that act as cements include: hematite, limonite, feldspars, anhydrite, gypsum, barite, clay minerals, and zeolite minerals.
Sandstone that becomes depleted of its cement binder through weathering gradually becomes friable and unstable. This process can be somewhat reversed by the application of tetraethyl orthosilicate which will deposit amorphous silicon dioxide between the sand grains. The reaction is as follows.

Pore space

Pore space includes the open spaces within a rock or a soil. The pore space in a rock has a direct relationship to the porosity and permeability of the rock. The porosity and permeability are directly influenced by the way the sand grains are packed together.
  • Porosity is the percentage of bulk volume that is inhabited by interstices within a given rock. Porosity is directly influenced by the packing of even-sized spherical grains, rearranged from loosely packed to tightest packed in sandstones.
  • Permeability is the rate in which water or other fluids flow through the rock. For groundwater, work permeability may be measured in gallons per day through a one square foot cross section under a unit hydraulic gradient.

    Types of sandstone

Sandstones are typically classified by point-counting a thin section using a method like the Gazzi-Dickinson Method. This yields the relative percentages of quartz, feldspar, and lithic grains and the amount of clay matrix. The composition of a sandstone can provide important information on the genesis of the sediments when used with a triangular quartz, feldspar, lithic chart. However, geologists have not been able to agree on a set of boundaries separating regions of the QFL triangle.
Visual aids are diagrams that allow geologists to interpret different characteristics of a sandstone. For example, a QFL chart can be marked with a provenance model that shows the likely tectonic origin of sandstones with various compositions of framework grains. Likewise, the stage of textural maturity chart illustrates the different stages that a sandstone goes through as the degree of kinetic processing of the sediments increases.
  • A QFL chart is a representation of the framework grains and matrix that is present in a sandstone. This chart is similar to those used in igneous petrology. When plotted correctly, this model of analysis creates a meaningful quantitative classification of sandstones.
  • A sandstone provenance chart is typically based on a QFL chart but allows geologists to visually interpret the different types of places from which sandstones can originate.
  • A stage of textural maturity chart shows the differences between immature, submature, mature, and supermature sandstones. As the sandstone becomes more mature, grains become more rounded, and there is less clay in the matrix of the rock.