Optical illusion


In visual perception, an optical illusion is an illusion caused by the visual system and characterized by a visual percept that arguably appears to differ from reality. Illusions come in a wide variety; their categorization is difficult because the underlying cause is often not clear but a classification proposed by Richard Gregory is useful as an orientation. According to that, there are three main classes: physical, physiological, and cognitive illusions, and in each class there are four kinds: Ambiguities, distortions, paradoxes, and fictions. A classical example for a physical distortion would be the apparent bending of a stick half immersed in water; an example for a physiological paradox is the motion aftereffect. An example for a physiological fiction is an afterimage. Three typical cognitive distortions are the Ponzo, Poggendorff, and Müller-Lyer illusion. Cognitive visual illusions are the result of unconscious inferences and are perhaps those most widely known.
[|Pathological visual illusions] arise from pathological changes in the physiological visual perception mechanisms causing the aforementioned types of illusions; they are discussed e.g. under visual hallucinations.
Optical illusions, as well as multi-sensory illusions involving visual perception, can also be used in the monitoring and rehabilitation of some psychological disorders, including phantom limb syndrome and schizophrenia.

Physical visual illusions

A familiar phenomenon and example for a physical visual illusion is when mountains appear to be much nearer in clear weather with low humidity than they are. This is because haze is a cue for depth perception, signalling the distance of far-away objects.
The classical example of a physical illusion is when a stick that is half immersed in water appears bent. This phenomenon was discussed by Ptolemy and was often a prototypical example for an illusion.

Physiological visual illusions

Physiological illusions, such as the afterimages following bright lights, or adapting stimuli of excessively longer alternating patterns, are presumed to be the effects on the eyes or brain of excessive stimulation or interaction with contextual or competing stimuli of a specific type—brightness, color, position, tile, size, movement, etc. The theory is that a stimulus follows its individual dedicated neural path in the early stages of visual processing and that intense or repetitive activity in that or interaction with active adjoining channels causes a physiological imbalance that alters perception.
The Hermann grid illusion and Mach bands are two illusions that are often explained using a biological approach. Lateral inhibition, where in receptive fields of the retina receptor signals from light and dark areas compete with one another, has been used to explain why we see bands of increased brightness at the edge of a color difference when viewing Mach bands. Once a receptor is active, it inhibits adjacent receptors. This inhibition creates contrast, highlighting edges. In the Hermann grid illusion, the gray spots that appear at the intersections at peripheral locations are often explained to occur because of lateral inhibition by the surround in larger receptive fields. However, lateral inhibition as an explanation of the Hermann grid illusion has been disproved.
More recent empirical approaches to optical illusions have had some success in explaining optical phenomena with which theories based on lateral inhibition have struggled.

Cognitive illusions

Cognitive illusions are assumed to arise by interaction with assumptions about the world, leading to "unconscious inferences", an idea first suggested in the 19th century by the German physicist and physician Hermann Helmholtz. Cognitive illusions are commonly divided into ambiguous illusions, distorting illusions, paradox illusions, or fiction illusions.
  • Ambiguous illusions are pictures or objects that elicit a perceptual "switch" between the alternative interpretations. The Necker cube is a well-known example; other instances are the Rubin vase and the "squircle", based on Kokichi Sugihara's ambiguous cylinder illusion.
  • Distorting or geometrical-optical illusions are characterized by distortions of size, length, position or curvature. A striking example is the Café wall illusion. Other examples are the famous Müller-Lyer illusion and Ponzo illusion.
  • Paradox illusions are generated by objects that are paradoxical or impossible, such as the Penrose triangle or impossible staircase seen, for example, in M. C. Escher's Ascending and Descending and Waterfall. The triangle is an illusion dependent on a cognitive misunderstanding that adjacent edges must join.
  • Fictions are when a figure is perceived even though it is not in the stimulus, like with the Kanizsa triangle, using illusory contours.
Specific examples of typical cognitive illusions include:
  • The Ponzo illusion, where two parallel lines of the same length appear to be different sizes due to their placement within converging lines that create a false sense of depth.
  • The Poggendorff illusion, where two straight lines partially obsecured by an intervening shape, typically a rectangle, appears misaligned when, in fact, they are collinear.
  • The Müller-Lyer illusion, where two lines of the same length appear to be different lengths due to the outward or inward pointing arrow-like fins attached to their ends.

    Explanation of cognitive illusions

Perceptual organization

To make sense of the world it is necessary to organize incoming sensations into information which is meaningful. Gestalt psychologists believe one way this is done is by perceiving individual sensory stimuli as a meaningful whole. Gestalt organization can be used to explain many illusions including the rabbit–duck illusion where the image as a whole switches back and forth from being a duck then being a rabbit and why in the figure–ground illusion the figure and ground are reversible.
In addition, gestalt theory can be used to explain the illusory contours in the Kanizsa's triangle. A floating white triangle, which does not exist, is seen. The brain has a need to see familiar simple objects and has a tendency to create a "whole" image from individual elements. Gestalt means "form" or "shape" in German. However, another explanation of the Kanizsa's triangle is based in evolutionary psychology and the fact that in order to survive it was important to see form and edges. The use of perceptual organization to create meaning out of stimuli is the principle behind other well-known illusions including impossible objects. The brain makes sense of shapes and symbols putting them together like a jigsaw puzzle, formulating that which is not there to that which is believable.
The gestalt principles of perception govern the way different objects are grouped. Good form is where the perceptual system tries to fill in the blanks in order to see simple objects rather than complex objects. Continuity is where the perceptual system tries to disambiguate which segments fit together into continuous lines. Proximity is where objects that are close together are associated. Similarity is where objects that are similar are seen as associated. Some of these elements have been successfully incorporated into quantitative models involving optimal estimation or Bayesian inference.
The double-anchoring theory, a popular but recent theory of lightness illusions, states that any region belongs to one or more frameworks, created by gestalt grouping principles, and within each frame is independently anchored to both the highest luminance and the surround luminance. A spot's lightness is determined by the average of the values computed in each framework.

Monocular depth and motion perception

Illusions can be based on an individual's ability to see in three dimensions even though the image hitting the retina is only two dimensional. The Ponzo illusion is an example of an illusion which uses monocular cues of depth perception to fool the eye. But even with two-dimensional images, the brain exaggerates vertical distances when compared with horizontal distances, as in the vertical–horizontal illusion where the two lines are exactly the same length.
In the Ponzo illusion the converging parallel lines tell the brain that the image higher in the visual field is farther away, therefore, the brain perceives the image to be larger, although the two images hitting the retina are the same size. The optical illusion seen in a diorama/false perspective also exploits assumptions based on monocular cues of depth perception. The M.C. Escher painting Waterfall exploits rules of depth and proximity and our understanding of the physical world to create an illusion. Like depth perception, motion perception is responsible for a number of sensory illusions. Film animation is based on the illusion that the brain perceives a series of slightly varied images produced in rapid succession as a moving picture. Likewise, when we are moving, as we would be while riding in a vehicle, stable surrounding objects may appear to move. We may also perceive a large object, like an airplane, to move more slowly than smaller objects, like a car, although the larger object is actually moving faster. The phi phenomenon is yet another example of how the brain perceives motion, which is most often created by blinking lights in close succession.
The ambiguity of direction of motion due to lack of visual references for depth is shown in the spinning dancer illusion. The spinning dancer appears to be moving clockwise or counterclockwise depending on spontaneous activity in the brain where perception is subjective. Recent studies show on the fMRI that there are spontaneous fluctuations in cortical activity while watching this illusion, particularly the parietal lobe because it is involved in perceiving movement.