Nonlinear mixed-effects model
Nonlinear mixed-effects models constitute a class of statistical models generalizing linear mixed-effects models. Like linear mixed-effects models, they are particularly useful in settings where there are multiple measurements within the same statistical units or when there are dependencies between measurements on related statistical units. Nonlinear mixed-effects models are applied in many fields including medicine, public health, pharmacology, and ecology.
Definition
While any statistical model containing both fixed effects and random effects is an example of a nonlinear mixed-effects model, the most commonly used models are members of the class of nonlinear mixed-effects models for repeated measureswhere
- is the number of groups/subjects,
- is the number of observations for the th group/subject,
- is a real-valued differentiable function of a group-specific parameter vector and a covariate vector,
- is modeled as a linear mixed-effects model where is a vector of fixed effects and is a vector of random effects associated with group, and
- is a random variable describing additive noise.
Estimation
Applications
Example: Disease progression modeling
Nonlinear mixed-effects models have been used for modeling progression of disease. In progressive disease, the temporal patterns of progression on outcome variables may follow a nonlinear temporal shape that is similar between patients. However, the stage of disease of an individual may not be known or only partially known from what can be measured. Therefore, a latent time variable that describe individual disease stage can be included in the model.Example: Modeling cognitive decline in Alzheimer's disease
is characterized by a progressive cognitive deterioration. However, patients may differ widely in cognitive ability and reserve, so cognitive testing at a single time point can often only be used to coarsely group individuals in different stages of disease. Now suppose we have a set of longitudinal cognitive data from individuals that are each categorized as having either normal cognition, mild cognitive impairment or dementia at the baseline visit. These longitudinal trajectories can be modeled using a nonlinear mixed effects model that allows differences in disease state based on baseline categorization:where
- is a function that models the mean time-profile of cognitive decline whose shape is determined by the parameters,
- represents observation time,
- and are dummy variables that are 1 if individual has MCI or dementia at baseline and 0 otherwise,
- and are parameters that model the difference in disease progression of the MCI and dementia groups relative to the cognitively normal,
- is the difference in disease stage of individual relative to his/her baseline category, and
- is a random variable describing additive noise.
Example: Growth analysis
Growth phenomena often follow nonlinear patters. Factors such as nutrient deficiency may both directly affect the measured outcome, but possibly also timing. If a model fails to account for the differences in timing, the estimated population-level curves may smooth out finer details due to lack of synchronization between organisms. Nonlinear mixed-effects models enable simultaneous modeling of individual differences in growth outcomes and timing.Example: Modeling human height
Models for estimating the mean curves of human height and weight as a function of age and the natural variation around the mean are used to create growth charts. The growth of children can however become desynchronized due to both genetic and environmental factors. For example, age at onset of puberty and its associated height spurt can vary several years between adolescents. Therefore, cross-sectional studies may underestimate the magnitude of the pubertal height spurt because age is not synchronized with biological development. The differences in biological development can be modeled using random effects that describe a mapping of observed age to a latent biological age using a so-called warping function. A simple nonlinear mixed-effects model with this structure is given bywhere
- is a function that represents the height development of a typical child as a function of age. Its shape is determined by the parameters,
- is the age of child corresponding to the height measurement,
- is a warping function that maps age to biological development to synchronize. Its shape is determined by the random effects,
- is a random variable describing additive variation.
Example: Population Pharmacokinetic/pharmacodynamic modeling
for describing exposure-response relationships such as the Emax model can be formulated as nonlinear mixed-effects models. The mixed-model approach allows modeling of both population level and individual differences in effects that have a nonlinear effect on the observed outcomes, for example the rate at which a compound is being metabolized or distributed in the body.Example: COVID-19 epidemiological modeling
The platform of the nonlinear mixed effect models can be used to describe infection trajectories of subjects and understand some common features shared across the subjects. In epidemiological problems, subjects can be countries, states, or counties, etc. This can be particularly useful in estimating a future trend of the epidemic in an early stage of pendemic where nearly little information is known regarding the disease.Example: Prediction of oil production curve of shale oil wells at a new location with latent kriging
The eventual success of petroleum development projects relies on a large degree of well construction costs. As for unconventional oil and gas reservoirs, because of very low permeability, and a flow mechanism very different from that of conventional reservoirs, estimates for the well construction cost often contain high levels of uncertainty, and oil companies need to make heavy investment in the drilling and completion phase of the wells. The overall recent commercial success rate of horizontal wells in the United States is known to be 65%, which implies that only 2 out of 3 drilled wells will be commercially successful. For this reason, one of the crucial tasks of petroleum engineers is to quantify the uncertainty associated with oil or gas production from shale reservoirs, and further, to predict an approximated production behavior of a new well at a new location given specific completion data before actual drilling takes place to save a large degree of well construction costs.The platform of the nonlinear mixed effect models can be extended to consider the spatial association by incorporating the geostatistical processes such as Gaussian process on the second stage of the model as follows:
where
- is a function that models the mean time-profile of log-scaled oil production rate whose shape is determined by the parameters. The function is obtained from taking logarithm to the rate decline curve used in decline curve analysis,
- represents covariates obtained from the completion process of the hydraulic fracturing and horizontal directional drilling for the -th well,
- represents the spatial location of the -th well,
- represents the Gaussian white noise with error variance ,
- represents the Gaussian process with Gaussian covariance function,
- represents the horseshoe shrinkage prior.