Non-stop decay
Non-stop decay is a cellular mechanism of mRNA surveillance to detect mRNA molecules lacking a stop codon and prevent these mRNAs from translation. The non-stop decay pathway releases ribosomes that have reached the far 3' end of an mRNA and guides the mRNA to the exosome complex, or to RNase R in bacteria for selective degradation. In contrast to nonsense-mediated decay, polypeptides do not release from the ribosome, and thus, NSD seems to involve mRNA decay factors distinct from NMD.
Non-stop decay
Non-stop decay is a cellular pathway that identifies and degrades aberrant mRNA transcripts that do not contain a proper stop codon. Stop codons are signals in messenger RNA that signal for synthesis of proteins to end. Aberrant transcripts are identified during translation when the ribosome translates into the poly A tail at the 3' end of mRNA. A non-stop transcript can occur when point mutations damage the normal stop codon. Moreover, some transcriptional events are more likely to preserve gene expression on a lower scale in particular states.The NSD pathway discharges ribosomes that have stalled at the 3' end of mRNA and directs the mRNA to the exosome complex in eukaryotes or RNase R in bacteria. Once directed to their appropriate sites, the transcripts are then degraded. The NSD mechanism requires the interaction of RNA exosome with the Ski complex, a multi-protein structure that includes the Ski2p helicase and Ski7p. The combination of these proteins and subsequent complex formation activates the degradation of aberrant mRNAs. Ski7p is thought to bind the ribosome stalled at the 3’ end of the mRNA poly tail and recruit the exosome to degrade the aberrant mRNA. However in mammalian cells, Ski7p is not found, and even the presence of the NSD mechanism itself has remained relatively unclear. The short splicing isoform of HBS1L was found to be the long-sought after human homologue of Ski7p, linking the exosome and SKI complexes. Recently, it has been reported that NSD also occurs in mammalian cells, albeit through a slightly different system. In mammals, due to the absence of Ski7, the GTPase Hbs1, as well as its binding partner Dom34, were identified as potential regulators of decay. Together, Hbs1/Dom34 are capable of binding to the 3’ end of an mis-regulated mRNA, facilitating the dissociation of malfunctioning or inactive ribosomes in order to restart the process of translation. In addition, once the Hbs1/Dom34 complex has dissociated and recycled a ribosome, it has also been shown to recruit the exosome/Ski complex.