Narrow class group


In algebraic number theory, the narrow class group of a number field K is a refinement of the class group of K that takes into account some information about embeddings of K into the field of real numbers.

Formal definition

Suppose that K is a finite extension of Q. Recall that the ordinary class group of K is defined as the quotient
where IK is the group of fractional ideals of K, and PK is the subgroup of principal fractional ideals of K, that is, ideals of the form aOK where a is an element of K.
The narrow class group is defined to be the quotient
where now PK+ is the group of totally positive principal fractional ideals of K; that is, ideals of the form aOK where a is an element of K such that σ is positive for every embedding

Uses

The narrow class group features prominently in the theory of representing integers by quadratic forms. An example is the following result.

Examples

For example, one can prove that the quadratic fields Q, Q, Q all have trivial narrow class group. Then, by choosing appropriate bases for the integers of each of these fields, the above theorem implies the following:
  • A prime p is of the form p = x2 + y2 for integers x and y if and only if
  • A prime p is of the form p = x2 − 2y2 for integers x and y if and only if
  • A prime p is of the form p = x2xy + y2 for integers x and y if and only if
An example that illustrates the difference between the narrow class group and the usual class group is the case of Q. This has trivial class group, but its narrow class group has order 2. Because the class group is trivial, the following statement is true:
  • A prime p or its inversep is of the form ± p = x2 − 6y2 for integers x and y if and only if
However, this statement is false if we focus only on p and not −p, because the narrow class group is nontrivial. The statement that classifies the positive p is the following:
  • A prime p is of the form p = x2 − 6y2 for integers x and y if and only if p = 3 or