Goddard Space Flight Center


The Goddard Space Flight Center is a major NASA space research laboratory located approximately northeast of Washington, D.C., in Greenbelt, Maryland, United States. Established on May 1, 1959, as NASA's first space flight center, GSFC employs about 10,000 civil servants and contractors. Named for American rocket propulsion pioneer Robert H. Goddard, it is one of ten major NASA field centers. Partially within the unincorporated community of Goddard, GSFC has a Greenbelt mailing address.
GSFC is the largest combined organization of scientists and engineers in the United States dedicated to increasing knowledge of the Earth, the Solar System, and the Universe via observations from space. GSFC is a major US laboratory for developing and operating uncrewed scientific spacecraft. GSFC conducts scientific investigation, development, manufacturing and operation of space systems, and development of related technologies. Goddard scientists can develop and support a mission, and Goddard engineers and technicians can design and build the spacecraft for that mission. Goddard scientist John C. Mather shared the 2006 Nobel Prize in Physics for his work on COBE.
GSFC also operates two spaceflight tracking and data acquisition networks, develops and maintains advanced space and Earth science data information systems, and develops satellite systems for the National Oceanic and Atmospheric Administration.
GSFC manages operations for many NASA and international missions including the James Webb Space Telescope and Hubble Space Telescope, the Explorers Program, the Discovery Program, the Earth Observing System, INTEGRAL, MAVEN, OSIRIS-REx, the Solar and Heliospheric Observatory, the Solar Dynamics Observatory, Tracking and Data Relay Satellite System '', Fermi, and Swift. Past missions managed by GSFC include the Rossi X-ray Timing Explorer, Compton Gamma Ray Observatory, SMM, COBE, IUE, and ROSAT''.

History

Founded as Beltsville Space Center, Goddard was NASA's first of four space centers. Its original charter was to perform five major functions on behalf of NASA: technology development and fabrication, planning, scientific research, technical operations, and project management. The center is organized into several directorates, each charged with one of these key functions.
On May 1, 1959, the center was renamed the Goddard Space Flight Center for Robert H. Goddard. Its first 157 employees transferred from the United States Navy's Project Vanguard missile program, and continued their work at the Naval Research Laboratory in Washington, D.C., while the center was under construction.
Goddard Space Flight Center contributed to Project Mercury, America's first human spaceflight program. The Center assumed a lead role for the project in its early days and managed the first 250 employees involved in the effort, who were stationed at Langley Research Center in Hampton, Virginia. However, the size and scope of Project Mercury soon prompted NASA to build a new Manned Spacecraft Center, now the Johnson Space Center, in Houston, Texas. Project Mercury's personnel and activities were transferred there in 1961.
Goddard Space Flight Center remained involved in the crewed space flight program, providing computer support and radar tracking of flights through a worldwide network of ground stations called the Spacecraft Tracking and Data Acquisition Network. However, the Center focused primarily on designing uncrewed satellites and spacecraft for scientific research missions. Goddard pioneered several fields of spacecraft development, including modular spacecraft design, which reduced costs and made it possible to repair satellites in orbit. Goddard's Solar Max satellite, launched in 1980, was repaired by astronauts on the Space Shuttle Challenger in 1984. The Hubble Space Telescope, launched in 1990, remains in service and continues to grow in capability thanks to its modular design and multiple servicing missions by the Space Shuttle.
Today, the center remains involved in each of NASA's key programs. Goddard has developed more instruments for planetary exploration than any other organization, among them scientific instruments sent to every planet in the Solar System. The center's contribution to the Earth Science Enterprise includes several spacecraft in the Earth Observing System fleet as well as EOSDIS, a science data collection, processing, and distribution system. For the crewed space flight program, Goddard develops tools for use by astronauts during extra-vehicular activity, and operates the Lunar Reconnaissance Orbiter, a spacecraft designed to study the Moon in preparation for future crewed exploration.

Missions

A fact sheet highlighting many of Goddard's previous missions is recorded on a 40th anniversary webpage.

Past

Goddard has been involved in designing, building, and operating spacecraft since the days of Explorer 1, the nation's first artificial satellite. The list of these missions reflects a diverse set of scientific objectives and goals. The Landsat series of spacecraft has been studying the Earth's resources since the launch of the first mission in 1972. TIROS-1 launched in 1960 as the first success in a long series of weather satellites. The Spartan platform deployed from the space shuttle, allowing simple, low-cost 2–3 day missions. The second of NASA's Great Observatories, the Compton Gamma Ray Observatory, operated for nine years before re-entering the Earth's atmosphere in 2000. Another of Goddard's space science observatories, the Cosmic Background Explorer, provided unique scientific data about the early universe.

Present

Goddard currently supports the operation of dozens of spacecraft collecting scientific data. These missions include Earth science projects like the Earth Observing System that includes the Terra, Aqua, and Aura spacecraft flying alongside several projects from other Centers or other countries. Other major Earth science projects that are currently operating include the Tropical Rainfall Measuring Mission and the Global Precipitation Measurement mission, missions that provide data critical to hurricane predictions. Many Goddard projects support other organizations, such as the US Geological Survey on Landsat-7 and -8, and the National Oceanic and Atmospheric Administration on the Geostationary Operational Environmental Satellite system that provide weather predictions.
Other Goddard missions support a variety of space science disciplines. Goddard's most famous project is the Hubble Space Telescope, a unique science platform that has been breaking new ground in astronomy since 1990. Other missions such as the Wilkinson Microwave Anisotropy Probe study the structure and evolution of the universe. Other missions such as the Solar and Heliospheric Observatory are currently studying the Sun and how its behavior affects life on the Earth. The Lunar Reconnaissance Orbiter is mapping out the composition and topography of the Moon and the Solar Dynamics Observatory is tracking the Sun's energy and influence on the Earth. The OSIRIS-REx asteroid sample return mission returned a sample from asteroid 101955 Bennu in 2023 and under the name OSIRIS-APEX is headed to asteroid 99942 Apophis in 2029.
Particularly noteworthy operations include the James Webb Space Telescope, which was launched in 2022 and enables investigations across many fields of astronomy and cosmology, such as observation of the first stars and the formation of the first galaxies.

Future

The Goddard community continually works on numerous operations and projects that have launch dates ranging from the upcoming year to a decade down the road. These operations also vary in what scientists hope they will uncover.

Science

Addressing scientific questions

NASA's missions address a broad range of scientific questions generally classified around four key areas: Earth sciences, astrophysics, heliophysics, and the Solar System. To simplify, Goddard studies Earth and Space.
Within the Earth sciences area, Goddard plays a major role in research to advance our understanding of the Earth as an environmental system, looking at questions related to how the components of that environmental system have developed, how they interact and how they evolve. This is all important to enable scientists to understand the practical impacts of natural and human activities during the coming decades and centuries.
Within Space Sciences, Goddard has distinguished itself with the 2006 Nobel Physics Prize given to John Mather and the COBE mission. Beyond the COBE mission, Goddard studies how the universe formed, what it is made of, how its components interact, and how it evolves. The center also contributes to research seeking to understand how stars and planetary systems form and evolve and studies the nature of the Sun's interaction with its surroundings.

From scientific questions to science missions

Based on existing knowledge accumulated through previous missions, new science questions are articulated. Missions are developed in the same way an experiment would be developed using the scientific method. In this context, Goddard does not work as an independent entity but rather as one of the 10 NASA centers working together to find answers to these scientific questions.
Each mission starts with a set of scientific questions to be answered, and a set of scientific requirements for the mission, which build on what has already been discovered by prior missions. Scientific requirements spell out the types data that will need to be collected. These scientific requirements are then transformed into mission concepts that start to specify the kind of spacecraft and scientific instruments need to be developed for these scientific questions to be answered.
Within Goddard, the Sciences and Exploration Directorate leads the center's scientific endeavors, including the development of technology related to scientific pursuits.