Molecular cloning


Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine.
In a conventional molecular cloning experiment, the DNA to be cloned is obtained from an organism of interest, then treated with enzymes in the test tube to generate smaller DNA fragments. Subsequently, these fragments are then combined with vector DNA to generate recombinant DNA molecules. The recombinant DNA is then introduced into a host organism. This will generate a population of organisms in which recombinant DNA molecules are replicated along with the host DNA. Because they contain foreign DNA fragments, these are transgenic or genetically modified microorganisms. This process takes advantage of the fact that a single bacterial cell can be induced to take up and replicate a single recombinant DNA molecule. This single cell can then be expanded exponentially to generate a large number of bacteria, each of which contains copies of the original recombinant molecule. Thus, both the resulting bacterial population, and the recombinant DNA molecule, are commonly referred to as "clones". Strictly speaking, recombinant DNA refers to DNA molecules, while molecular cloning refers to the experimental methods used to assemble them. The idea arose that different DNA sequences could be inserted into a plasmid and that these foreign sequences would be carried into bacteria and replicated as part of the plasmid. That is, these plasmids could serve as cloning vectors to carry genes.
Virtually any DNA sequence can be cloned and amplified, but there are some factors that might limit the success of the process. Examples of the DNA sequences that are difficult to clone are inverted repeats, origins of replication, centromeres and telomeres. There is also a lower chance of success when inserting large-sized DNA sequences. Inserts larger than 10 kbp have very limited success, but bacteriophages such as bacteriophage λ can be modified to successfully insert a sequence up to 40 kbp.

History

Prior to the 1970s, the understanding of genetics and molecular biology was severely hampered by an inability to isolate and study individual genes from complex organisms. This changed dramatically with the advent of molecular cloning methods. Microbiologists, seeking to understand the molecular mechanisms through which bacteria restricted the growth of bacteriophage, isolated restriction endonucleases, enzymes that could cleave DNA molecules only when specific DNA sequences were encountered. They showed that restriction enzymes cleaved chromosome-length DNA molecules at specific locations, and that specific sections of the larger molecule could be purified by size fractionation. Using a second enzyme, DNA ligase, fragments generated by restriction enzymes could be joined in new combinations, termed recombinant DNA. By recombining DNA segments of interest with vector DNA, such as bacteriophage or plasmids, which naturally replicate inside bacteria, large quantities of purified recombinant DNA molecules could be produced in bacterial cultures. The first recombinant DNA molecules were generated and studied in 1972.

Overview

Molecular cloning takes advantage of the fact that the chemical structure of DNA is fundamentally the same in all living organisms. Therefore, if any segment of DNA from any organism is inserted into a DNA segment containing the molecular sequences required for DNA replication, and the resulting recombinant DNA is introduced into the organism from which the replication sequences were obtained, then the foreign DNA will be replicated along with the host cell's DNA in the transgenic organism.
Molecular cloning is similar to PCR in that it permits the replication of DNA sequence. The fundamental difference between the two methods is that molecular cloning involves replication of the DNA in a living microorganism, while PCR replicates DNA in an in vitro solution, free of living cells.

''In silico'' cloning and simulations

Before actual cloning experiments are performed in the lab, most cloning experiments are planned in a computer, using specialized software. Although the detailed planning of the cloning can be done in any text editor, together with online utilities for e.g. PCR primer design, dedicated software exist for the purpose. Software for the purpose include for example ApE , DNAStrider , Serial Cloner , Collagene , and . These programs allow to simulate PCR reactions, restriction digests, ligations, etc., that is, all the steps described below.

Steps

In standard molecular cloning experiments, the cloning of any DNA fragment essentially involves seven steps: Choice of host organism and cloning vector, Preparation of vector DNA, Preparation of DNA to be cloned, Creation of recombinant DNA, Introduction of recombinant DNA into host organism, Selection of organisms containing recombinant DNA, Screening for clones with desired DNA inserts and biological properties.
Notably, the growing capacity and fidelity of DNA synthesis platforms allows for increasingly intricate designs in molecular engineering. These projects may include very long strands of novel DNA sequence and/or test entire libraries simultaneously, as opposed to of individual sequences. These shifts introduce complexity that require design to move away from the flat nucleotide-based representation and towards a higher level of abstraction. Examples of such tools are GenoCAD, Teselagen or GeneticConstructor .

Choice of host organism and cloning vector

Although a very large number of host organisms and molecular cloning vectors are in use, the great majority of molecular cloning experiments begin with a laboratory strain of the bacterium E. coli and a plasmid cloning vector. E. coli and plasmid vectors are in common use because they are technically sophisticated, versatile, widely available, and offer rapid growth of recombinant organisms with minimal equipment. If the DNA to be cloned is exceptionally large, then a bacterial artificial chromosome or yeast artificial chromosome vector is often chosen.
Specialized applications may call for specialized host-vector systems. For example, if the experimentalists wish to harvest a particular protein from the recombinant organism, then an expression vector is chosen that contains appropriate signals for transcription and translation in the desired host organism. Alternatively, if replication of the DNA in different species is desired, then a multiple host range vector may be selected. In practice, however, specialized molecular cloning experiments usually begin with cloning into a bacterial plasmid, followed by subcloning into a specialized vector.
Whatever combination of host and vector are used, the vector almost always contains four DNA segments that are critically important to its function and experimental utility:
  • DNA replication origin is necessary for the vector to replicate inside the host organism
  • one or more unique restriction endonuclease recognition sites to serve as sites where foreign DNA may be introduced
  • a selectable genetic marker gene that can be used to enable the survival of cells that have taken up vector sequences
  • a tag gene that can be used to screen for cells containing the foreign DNA
File:BamHI2.png|thumb|250px|left|Cleavage of a DNA sequence containing the BamHI restriction site. The DNA is cleaved at the palindromic sequence to produce 'sticky ends'.

Preparation of vector DNA

The cloning vector is treated with a restriction endonuclease to cleave the DNA at the site where foreign DNA will be inserted. The restriction enzyme is chosen to generate a configuration at the cleavage site that is compatible with the ends of the foreign DNA. Typically, this is done by cleaving the vector DNA and foreign DNA with the same restriction enzyme or restriction endonuclease, for example EcoRI and this restriction enzyme was isolated from E.coli. Most modern vectors contain a variety of convenient cleavage sites that are unique within the vector molecule and are located within a gene whose inactivation can be used to distinguish recombinant from non-recombinant organisms at a later step in the process. To improve the ratio of recombinant to non-recombinant organisms, the cleaved vector may be treated with an enzyme that dephosphorylates the vector ends. Vector molecules with dephosphorylated ends are unable to replicate, and replication can only be restored if foreign DNA is integrated into the cleavage site.

Preparation of DNA to be cloned

For cloning of genomic DNA, the DNA to be cloned is extracted from the organism of interest. Virtually any tissue source can be used, as long as the DNA is not extensively degraded. The DNA is then purified using simple methods to remove contaminating proteins, RNA and smaller molecules. Polymerase chain reaction methods are often used for amplification of specific DNA or RNA sequences prior to molecular cloning.
DNA for cloning experiments may also be obtained from RNA using reverse transcriptase, or in the form of synthetic DNA. cDNA cloning is usually used to obtain clones representative of the mRNA population of the cells of interest, while synthetic DNA is used to obtain any precise sequence defined by the designer. Such a designed sequence may be required when moving genes across genetic codes or simply for increasing expression via codon optimization.
The purified DNA is then treated with a restriction enzyme to generate fragments with ends capable of being linked to those of the vector. If necessary, short double-stranded segments of DNA containing desired restriction sites may be added to create end structures that are compatible with the vector.