Mixing (process engineering)


In industrial process engineering, mixing is a unit operation that involves manipulation of a heterogeneous physical system with the intent to make it more homogeneous. Familiar examples include pumping of the water in a swimming pool to homogenize the water temperature, and the stirring of pancake batter to eliminate lumps.
Mixing is performed to allow transfer of heat or mass, or both, to occur between one or more streams, components or phases. Modern industrial processing almost always involves some form of mixing. Some classes of chemical reactors are also mixers.
With the right equipment, it is possible to mix a solid, liquid or gas into another solid, liquid or gas. A biofuel fermenter may require the mixing of microbes, gases and liquid medium for optimal yield; organic nitration requires concentrated nitric and sulfuric acids to be mixed with a hydrophobic organic phase; production of pharmaceutical tablets requires blending of solid powders.
The opposite of mixing is segregation. A classical example of segregation is the brazil nut effect.
The mathematics of mixing is highly abstract, and is a part of ergodic theory, itself a part of chaos theory.

Mixing classification

The type of operation and equipment used during mixing depends on the state of materials being mixed and the miscibility of the materials being processed. In this context, the act of mixing may be synonymous with stirring-, or kneading-processes.

Liquid–liquid mixing

Mixing of liquids occurs frequently in process engineering. The nature of liquids to blend determines the equipment used. Single-phase blending tends to involve low-shear, high-flow mixers to cause liquid engulfment, while multi-phase mixing generally requires the use of high-shear, low-flow mixers to create droplets of one liquid in laminar, turbulent or transitional flow regimes, depending on the Reynolds number of the flow. Turbulent or transitional mixing is frequently conducted with turbines or impellers; laminar mixing is conducted with helical ribbon or anchor mixers.

Single-phase blending

Mixing of liquids that are miscible or at least soluble in each other occurs frequently in engineering. An everyday example would be the addition of milk or cream to tea or coffee. Since both liquids are water-based, they dissolve easily in one another. The momentum of the liquid being added is sometimes enough to cause enough turbulence to mix the two, since the viscosity of both liquids is relatively low. If necessary, a spoon or paddle could be used to complete the mixing process. Blending in a more viscous liquid, such as honey, requires more mixing power per unit volume to achieve the same homogeneity in the same amount of time.

Gas–gas mixing

Solid–solid mixing

Dry blenders are a type of industrial mixer which are typically used to blend multiple dry components until they are homogeneous. Often minor liquid additions are made to the dry blend to modify the product formulation. Blending times using dry ingredients are often short but are somewhat dependent upon the varying percentages of each component, and the difference in the bulk densities of each. Ribbon, paddle, tumble and vertical blenders are available. Many products including pharmaceuticals, foods, chemicals, fertilizers, plastics, pigments, and cosmetics are manufactured in these designs. Dry blenders range in capacity from half-cubic-foot laboratory models to 500-cubic-foot production units. A wide variety of horsepower-and-speed combinations and optional features such as sanitary finishes, vacuum construction, special valves and cover openings are offered by most manufacturers.
Blending powders is one of the oldest unit-operations in the solids handling industries. For many decades powder blending has been used just to homogenize bulk materials. Many different machines have been designed to handle materials with various bulk solids properties. On the basis of the practical experience gained with these different machines, engineering knowledge has been developed to construct reliable equipment and to predict scale-up and mixing behavior. Nowadays the same mixing technologies are used for many more applications: to improve product quality, to coat particles, to fuse materials, to wet, to disperse in liquid, to agglomerate, to alter functional material properties, etc.
This wide range of applications of mixing equipment requires a high level of knowledge, long time experience and extended test facilities to come to the optimal selection of equipment and processes.
Solid-solid mixing can be performed either in batch mixers, which is the simpler form of mixing, or in certain cases in continuous dry-mix, more complex but which provide interesting advantages in terms of segregation, capacity and validation.
One example of a solid–solid mixing process is mulling foundry molding sand, where sand, bentonite clay, fine coal dust and water are mixed to a plastic, moldable and reusable mass, applied for molding and pouring molten metal to obtain sand castings that are metallic parts for automobile, machine building, construction or other industries.

Mixing mechanisms

In powder two different dimensions in the mixing process can be determined: convective mixing and intensive mixing. In the case of convective mixing material in the mixer is transported from one location to another. This type of mixing leads to a less ordered state inside the mixer, the components that must be mixed are distributed over the other components. With progressing time the mixture becomes more randomly ordered. After a certain mixing time the ultimate random state is reached. Usually this type of mixing is applied for free-flowing and coarse materials.
Possible threats during macro mixing is the de-mixing of the components, since differences in size, shape or density of the different particles can lead to segregation.
When materials are cohesive, which is the case with e.g. fine particles and also with wet material, convective mixing is no longer sufficient to obtain a randomly ordered mixture. The relative strong inter-particle forces form lumps, which are not broken up by the mild transportation forces in the convective mixer. To decrease the lump size additional forces are necessary; i.e. more energy intensive mixing is required. These additional forces can either be impact forces or shear forces.

Liquid–solid mixing

Liquid–solid mixing is typically done to suspend coarse free-flowing solids, or to break up lumps of fine agglomerated solids. An example of the former is the mixing granulated sugar into water; an example of the latter is the mixing of flour or powdered milk into water. In the first case, the particles can be lifted into suspension by bulk motion of the fluid; in the second, the mixer itself must destabilize the lumps and cause them to disintegrate.
One example of a solid–liquid mixing process in industry is concrete mixing, where cement, sand, small stones or gravel and water are commingled to a homogeneous self-hardening mass, used in the construction industry.

Solid suspension

Suspension of solids into a liquid is done to improve the rate of mass transfer between the solid and the liquid. Examples include dissolving a solid reactant into a solvent, or suspending catalyst particles in liquid to improve the flow of reactants and products to and from the particles. The associated eddy diffusion increases the rate of mass transfer within the bulk of the fluid, and the convection of material away from the particles decreases the size of the boundary layer, where most of the resistance to mass transfer occurs. Axial-flow impellers are preferred for solid suspension because solid suspension needs momentum rather than shear, although radial-flow impellers can be used in a tank with baffles, which converts some of the rotational motion into vertical motion. When the solid is denser than the liquid, the impeller is rotated so that the fluid is pushed downwards; when the solid is less dense than the liquid, the impeller is rotated so that the fluid is pushed upwards. The equipment preferred for solid suspension produces large volumetric flows but not necessarily high shear; high flow-number turbine impellers, such as hydrofoils, are typically used. Multiple turbines mounted on the same shaft can reduce power draw.
The degree of homogeneity of a solid-liquid suspension can be described by the RSD. A perfect suspension would have a RSD of 0% but in practice, a RSD inferior or equal to 20% can be sufficient for the suspension to be considered homogeneous, although this is case-dependent. The RSD can be obtained by experimental measurements or by calculations.
Measurements can be performed at full scale but this is generally unpractical, so it is common to perform measurements at small scale and use a "scale-up" criterion to extrapolate the RSD from small to full scale.
Calculations can be performed using a computational fluid dynamics software or by using correlations built on theoretical developments, experimental measurements and/or computational fluid dynamics data.
Computational fluid dynamics calculations are quite accurate and can accommodate virtually any tank and agitator designs, but they require expertise and long computation time. Correlations are easy to use but are less accurate and don't cover any possible designs. The most popular correlation is the ‘just suspended speed’ correlation published by Zwietering. It's an easy to use correlation but it is not meant for homogeneous suspension. It only provides a crude estimate of the stirring speed for ‘bad’ quality suspensions where no particle remains at the bottom for more than 1 or 2 seconds. Another equivalent correlation is the correlation from Mersmann. For ‘good’ quality suspensions, some examples of useful correlations can be found in the publications of Barresi, Magelli, Cekinski or Macqueron. Machine learning can also be used to build models way more accurate than "classical" correlations.