Microbialite
Microbialite is a benthic sedimentary deposit made of carbonate mud that is formed with the mediation of microbes. The constituent carbonate mud is a type of automicrite ; therefore, it precipitates in situ instead of being transported and deposited. Being formed in situ, a microbialite can be seen as a type of boundstone where reef builders are microbes, and precipitation of carbonate is biotically induced instead of forming tests, shells or skeletons.
Microbialites can also be defined as microbial mats with lithification capacity. Bacteria can precipitate carbonate both in shallow and in deep water and so microbialites can form regardless of the sunlight.
Microbialites are the foundation of many lacustrine ecosystems, such as the biosystem of the Great Salt Lake with its millions of migratory birds or, serving in the Alchichica Lake as nurseries for axolotl and a variety of fish.
Microbialites were very important to the formation of Precambrian and Phanerozoic limestones in many different environments, marine and not. The most favorable time for stromatolite proliferation was from 2800 Ma to 1000 Ma when stromatolites were the main constituents of carbonate platforms. The three types of microbialites are stromatolites, thrombolites, and leiolites.
Classification
Microbialites can have three different fabrics:- Stromatolitic: microbialite layered, laminated or agglutinated to form a stromatolite.
- Thrombolitic: microbialite with a clotted peloidal fabric if observed with a petrographic microscope. The density of peloids is variable. At the scale of the hand sample, the rock shows a dendritic fabric, and can be named thrombolite.
- Leiolitic: a microbialite with no layering nor clotted peloidal fabric. It is only made of a dense automicrite.
Evolution
Formation of microbialites
The formation of microbialites is complex and is a continuous process of precipitation and dissolution, where different microbial metabolisms are coupled and a high saturation index of ions in water is present.Microbialites have two possible genesis mechanisms:
1) Mineral precipitation: is the main formation process of microbialites and it can be due to inorganic precipitation or to the passive influence of microbial metabolisms. There can also be precipitation due to saturation of the microenvironment when extracellular polymeric substances are rapidly degraded, increasing ion saturation.
2) Trapping and binding: when the microbial community includes mineral particles of the environment that adhere to the extracellular polymeric substances. This process is very popular, since it was described in modern microbialites of Shark Bay and Bahamas, but it has been shown to be very uncommon throughout the 3500 million year long geological history of microbialites.
Modern microbialites distribution
Living modern microbialites are rare and can be found confined to places such as:- Crater lakes: Blue Lake, Lake Satonda, Lake Dziani, Lake Alchichica, Lake Vai Lahi and Lake Vai Sii, Lake Salda
- Saline / hypersaline lakes / lagoons: Pyramid Lake and Great Salt Lake, Lake Van, Brava Lagoon and Tebinquicho Lagoon
- Alkaline lakes: Lake Thetis, Lake Sarmiento, Lake Nuoertu and Lake Huhejaran, Mono Lake, Lake Turkana, Lake Petukhovskoe
- Freshwater lakes / lagoons: Lagoa Salgada, Laguna Negra, Catamarca, Lagunas de Ruidera, Bacalar, Lake Richmond, Pavilion Lake, Green Lake Alkaline pools: Four swamp blue pools Abandoned open mines: Clinton Creek, Rio Tinto
- Marine / Estuary / Estuary Systems: Shark Bay, Australia, Highbourne Cay, Tikehau, Cayo Coco, Lake Clifton, Western Australia.
Composition
Microbes that produce microbialites
A broad number of studies have analyzed the diversity of microorganisms living at the surface of microbialites. Very often, this diversity is very high and includes bacteria, archaea and eukaryotes. While the phylogenetic diversity of these microbial communities is pretty well assessed using molecular biology, the identity of the organisms contributing to carbonate formation remains uncertain. Interestingly, some microorganisms seem to be present in microbialites forming in several different lakes, defining a core microbiome. Microbes that precipitate carbonate to build microbialites are mostly prokaryotes, which include bacteria and archaea. The best known carbonate-producing bacteria are Cyanobacteria and Sulfate-reducing bacteria. Additional bacteria may play a prominent role, such as bacteria performing anoxygenic photosynthesis is. Archaea are often extremophiles and thus live in remote environments where other organisms cannot live, such as white smokers at the bottom of the oceans.Eukaryotic microbes, instead, produce less carbonate than prokaryotes.