Cofactor (biochemistry)


A cofactor is a non-protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst. Cofactors can be considered "helper molecules" that assist in biochemical transformations. The rates at which these happen are characterized in an area of study called enzyme kinetics. Cofactors typically differ from ligands in that they often derive their function by remaining bound.
Cofactors can be classified into two types: inorganic ions and complex organic molecules called coenzymes. Coenzymes are mainly derived from vitamins and other organic essential nutrients in small amounts.
Coenzymes are further divided into two types. The first is called a "prosthetic group", which consists of a coenzyme that is tightly bound to a protein. The second type of coenzymes are called "cosubstrates", and are transiently bound to the protein. Cosubstrates may be released from a protein at some point, and then rebind later. Both prosthetic groups and cosubstrates have the same function, which is to facilitate the reaction of enzymes and proteins. An inactive enzyme without the cofactor is called an apoenzyme, while the complete enzyme with cofactor is called a holoenzyme.
The International Union of Pure and Applied Chemistry defines "coenzyme" a little differently, namely as a low-molecular-weight, non-protein organic compound that is loosely attached, participating in enzymatic reactions as a dissociable carrier of chemical groups or electrons; a prosthetic group is defined as a tightly bound, nonpolypeptide unit in a protein that is regenerated in each enzymatic turnover.
Some enzymes or enzyme complexes require several cofactors. For example, the multienzyme complex pyruvate dehydrogenase at the junction of glycolysis and the citric acid cycle requires five organic cofactors and one metal ion: loosely bound thiamine pyrophosphate, covalently bound lipoamide and flavin adenine dinucleotide, cosubstrates nicotinamide adenine dinucleotide and coenzyme A, and a metal ion.
Organic cofactors are often vitamins or made from vitamins. Many contain the nucleotide adenosine monophosphate as part of their structures, such as ATP, coenzyme A, FAD, and NAD+. This common structure may reflect a common evolutionary origin as part of ribozymes in an ancient RNA world. It has been suggested that the AMP part of the molecule can be considered to be a kind of "handle" by which the enzyme can "grasp" the coenzyme to switch it between different catalytic centers.

Classification

Cofactors can be divided into two major groups: organic 'cofactors, such as flavin or heme; and inorganic cofactors', such as the metal ions Mg2+, Zn2+, Cu+, Mn2+ and iron–sulfur clusters.
Organic cofactors are sometimes further divided into coenzymes and prosthetic groups. The term coenzyme refers specifically to enzymes and, as such, to the functional properties of a protein. On the other hand, "prosthetic group" emphasizes the nature of the binding of a cofactor to a protein and, thus, refers to a structural property. Different sources give slightly different definitions of coenzymes, cofactors, and prosthetic groups. Some consider tightly bound organic molecules as prosthetic groups and not as coenzymes, while others define all non-protein organic molecules needed for enzyme activity as coenzymes, and classify those that are tightly bound as coenzyme prosthetic groups. These terms are often used loosely.
A 1980 letter in Trends in Biochemistry Sciences noted the confusion in the literature and the essentially arbitrary distinction made between prosthetic groups and coenzymes group and proposed the following scheme. Here, cofactors were defined as an additional substance apart from protein and substrate that is required for enzyme activity and a prosthetic group as a substance that undergoes its whole catalytic cycle attached to a single enzyme molecule. However, the author could not arrive at a single all-encompassing definition of a "coenzyme" and proposed that this term be dropped from use in the literature.

Inorganic cofactors

Metal ions

s are common cofactors. The study of these cofactors falls under the area of bioinorganic chemistry. In nutrition, the list of essential trace elements reflects their role as cofactors. In humans this list commonly includes iron, magnesium, manganese, cobalt, copper, zinc, and molybdenum. Although chromium deficiency causes impaired glucose tolerance, no human enzyme that uses this metal as a cofactor has been identified. Iodine is also an essential trace element, but this element is used as part of the structure of thyroid hormones rather than as an enzyme cofactor. Calcium is another special case, in that it is required as a component of the human diet, and it is needed for the full activity of many enzymes, such as nitric oxide synthase, protein phosphatases, and adenylate kinase, but calcium activates these enzymes in allosteric regulation, often binding to these enzymes in a complex with calmodulin. Calcium is, therefore, a cell signaling ion, and not usually considered a cofactor of the enzymes it regulates.
Other organisms require additional metals as enzyme cofactors, such as vanadium in the nitrogenase of the nitrogen-fixing bacteria of the genus Azotobacter, tungsten in the aldehyde ferredoxin oxidoreductase of the thermophilic archaean Pyrococcus furiosus, and even cadmium in the carbonic anhydrase from the marine diatom Thalassiosira weissflogii.
In many cases, the cofactor includes both an inorganic and organic component. One diverse set of examples is the heme proteins, which consist of a porphyrin ring coordinated to iron.
IonExamples of enzymes containing this ion
CupricCytochrome oxidase
Ferrous or FerricCatalase
Cytochrome
Nitrogenase
Hydrogenase
MagnesiumGlucose 6-phosphatase
Hexokinase
DNA polymerase
ManganeseArginase
MolybdenumNitrate reductase
Nitrogenase
Xanthine oxidase
NickelUrease
ZincAlcohol dehydrogenase
Carbonic anhydrase
DNA polymerase

File:2Fe2S.png|thumb|right|220px|class=skin-invert-image|A simple cluster containing two iron atoms and two sulfur atoms, coordinated by four protein cysteine residues.

Iron–sulfur clusters

Iron–sulfur clusters are complexes of iron and sulfur atoms held within proteins by cysteinyl residues. They play both structural and functional roles, including electron transfer, redox sensing, and as structural modules.

Organic

Organic cofactors are small organic molecules that can be either loosely or tightly bound to the enzyme and directly participate in the reaction. In the latter case, when it is difficult to remove without denaturing the enzyme, it can be called a prosthetic group. There is no sharp division between loosely and tightly bound cofactors. Many such as NAD+ can be tightly bound in some enzymes, while it is loosely bound in others. Another example is thiamine pyrophosphate, which is tightly bound in transketolase or pyruvate decarboxylase, while it is less tightly bound in pyruvate dehydrogenase. Other coenzymes, flavin adenine dinucleotide, biotin, and lipoamide, for instance, are tightly bound. Tightly bound cofactors are, in general, regenerated during the same reaction cycle, while loosely bound cofactors can be regenerated in a subsequent reaction catalyzed by a different enzyme. In the latter case, the cofactor can also be considered a substrate or cosubstrate.
Vitamins can serve as precursors to many organic cofactors or as coenzymes themselves. However, vitamins do have other functions in the body. Many organic cofactors also contain a nucleotide, such as the electron carriers NAD and FAD, and coenzyme A, which carries acyl groups. Most of these cofactors are found in a huge variety of species, and some are universal to all forms of life. An exception to this wide distribution is a group of unique cofactors that evolved in methanogens, which are restricted to this group of archaea.
Although enzyme catalyzed industrial processes are highly efficient, some of the enzymes are dependent on nicotinamide cofactors. Due to the high price of such cofactors, these processes would not be economically competitive. Recently, some synthetic organic compounds were identified as economically promising biomimetic counterparts of natural cofactors.

Vitamins and derivatives

Non-vitamins

Cofactors as metabolic intermediates

Metabolism involves a vast array of chemical reactions, but most fall under a few basic types of reactions that involve the transfer of functional groups. This common chemistry allows cells to use a small set of metabolic intermediates to carry chemical groups between different reactions. These group-transfer intermediates are the loosely bound organic cofactors, often called coenzymes.
Each class of group-transfer reaction is carried out by a particular cofactor, which is the substrate for a set of enzymes that produce it, and a set of enzymes that consume it. An example of this are the dehydrogenases that use nicotinamide adenine dinucleotide as a cofactor. Here, hundreds of separate types of enzymes remove electrons from their substrates and reduce NAD+ to NADH. This reduced cofactor is then a substrate for any of the reductases in the cell that require electrons to reduce their substrates.
Therefore, these cofactors are continuously recycled as part of metabolism. As an example, the total quantity of ATP in the human body is about 0.1 mole. This ATP is constantly being broken down into ADP, and then converted back into ATP. Thus, at any given time, the total amount of ATP + ADP remains fairly constant. The energy used by human cells requires the hydrolysis of 100 to 150 moles of ATP daily, which is around 50 to 75 kg. In typical situations, humans use up their body weight of ATP over the course of the day. This means that each ATP molecule is recycled 1000 to 1500 times daily.