Mesopelagic zone


The mesopelagic 'zone, also known as the middle pelagic or twilight zone', is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins at the depth where only 1% of incident light reaches and ends where there is no light; the depths of this zone are between approximately below the ocean surface.
The mesopelagic zone occupies about 60% of the planet's surface and about 20% of the ocean's volume, amounting to a large part of the total biosphere. It hosts a diverse biological community that includes bristlemouths, blobfish, bioluminescent jellyfish, giant squid, and a myriad of other unique organisms adapted to live in a low-light environment. It has long captivated the imagination of scientists, artists and writers; deep sea creatures are prominent in popular culture.

Physical conditions

The mesopelagic zone includes the region of sharp changes in temperature, salinity and density called the thermocline, halocline, and pycnocline respectively. The temperature variations are large; from over at the upper layers to around at the boundary with the bathyal zone. The variation in salinity is smaller, typically between 34.5 and 35 psu. The density ranges from 1023 to 1027 g/L of seawater. These changes in temperature, salinity, and density induce stratification which create ocean layers. These different water masses affect gradients and mixing of nutrients and dissolved gasses. This makes it a dynamic zone.
The mesopelagic zone has some unique acoustic features. The Sound Fixing and Ranging channel, where sound travels the slowest due to salinity and temperature variations, is located at the base of the mesopelagic zone at about 600–1,200m. It is a wave-guided zone where sound waves refract within the layer and propagate long distances. The channel got its name during World War II when the US Navy proposed using it as a life saving tool. Shipwreck survivors could drop a small explosive timed to explode in the SOFAR channel and then listening stations could determine the position of the life raft. During the 1950s, the US Navy tried to use this zone to detect Soviet submarines by creating an array of hydrophones called the Sound Surveillance System Oceanographers later used this underwater surveillance system to figure out the speed and direction of deep ocean currents by dropping SOFAR floats that could be detected with the SOSUS array.
The mesopelagic zone is important for water mass formation, such as mode water. Mode water is a water mass that is typically defined by its vertically mixed properties. It often forms as deep mixed layers at the depth of the thermocline. The mode water in the mesopelagic has residency times on decadal or century scales. The longer overturning times contrast with the daily and shorter scales that a variety of animals move vertically through the zone and sinking of various debris.

Biogeochemistry

Carbon

The mesopelagic zone plays a key role in the ocean's biological pump, which contributes to the oceanic carbon cycle. In the biological pump, organic carbon is produced in the surface euphotic zone where light promotes photosynthesis. A fraction of this production is exported out of the surface mixed layer and into the mesopelagic zone. One pathway for carbon export from the euphotic layer is through sinking of particles, which can be accelerated through repackaging of organic matter in zooplankton fecal pellets, ballasted particles, and aggregates.
In the mesopelagic zone, the biological pump is key to carbon cycling, as this zone is largely dominated by remineralization of particulate organic carbon. When a fraction of POC is exported from the euphotic zone, an estimated 90% of that POC is respired in the mesopelagic zone. This is due to the microbial organisms that respire organic matter and remineralize the nutrients, while mesopelagic fish also package organic matter into quick-sinking parcels for deeper export.
Another key process occurring in this zone is the diel vertical migration of certain species, which move between the euphotic zone and mesopelagic zone and actively transport particulate organic matter to the deep. In one study in the Equatorial Pacific, myctophids in the mesopelagic zone were estimated to actively transport 15–28% of the passive POC sinking to the deep, while a study near the Canary Islands estimated 53% of vertical carbon flux was due to active transport from a combination of zooplankton and micronekton. When primary productivity is high, the contribution of active transport by vertical migration has been estimated to be comparable to sinking particle export.

Particle Packaging and sinking

Mean particle sinking rates are 10 to 100 m/day. Sinking rates have been measured in the project VERTIGO using settling velocity sediment traps. The variability in sinking rates is due to differences in ballast, water temperature, food web structure and the types of phyto and zooplankton in different areas of the ocean. If the material sinks faster, then it gets respired less by bacteria, transporting more carbon from the surface layer to the deep ocean. Larger fecal pellets sink faster due to lower friction-surface/mass ratio. More viscous waters could slow the sinking rate of particles.

Oxygen

Dissolved oxygen is a requirement for aerobic respiration, and while the surface ocean is usually oxygen-rich due to atmospheric gas exchange and photosynthesis, the mesopelagic zone is not in direct contact with the atmosphere, due to stratification at the base of the surface mixed layer. Organic matter is exported to the mesopelagic zone from the overlying euphotic layer, while the minimal light in the mesopelagic zone limits photosynthesis. The oxygen consumption due to respiration of most of the sinking organic matter and lack of gas exchange, often creates an oxygen minimum zone in the mesopelagic. The mesopelagic OMZ is particularly severe in the eastern tropical Pacific Ocean and tropical Indian Ocean due to poor ventilation and high rates of organic carbon export to the mesopelagic. Oxygen concentrations in the mesopelagic are occasionally result in suboxic concentrations, making aerobic respiration difficult for organisms. In these anoxic regions, chemosynthesis may occur in which CO2 and reduced compounds such as sulfide or ammonia are taken up to form organic carbon, contributing to the organic carbon reservoir in the mesopelagic. This pathway of carbon fixation has been estimated to be comparable in rate to the contribution by heterotrophic production in this ocean realm.

Nitrogen

The mesopelagic zone, an area of significant respiration and remineralization of organic particles, is generally nutrient-rich. This is in contrast to the overlying euphotic zone, which is often nutrient-limited. Areas of low oxygen such as OMZ's are a key area of denitrification by prokaryotes, a heterotrophic pathways in which nitrate is converted into nitrogen gas, resulting in a loss to the ocean reservoir of reactive nitrogen. At the suboxic interface that occurs at the edge of the OMZ, nitrite and ammonium can be coupled to produce nitrogen gas through anammox, also removing nitrogen from the biologically available pool.

Biology

Although some light penetrates the mesopelagic zone, it is insufficient for photosynthesis. The biological community of the mesopelagic zone has adapted to a low-light environment. This is a very efficient ecosystem with many organisms recycling the organic matter sinking from the epipelagic zone resulting in very little organic carbon making it to deeper ocean waters. The general types of life forms found are daytime-visiting herbivores, detritivores feeding on dead organisms and fecal pellets, and carnivores feeding on those detritivores.
Many organisms in the mesopelagic zone move up into the epipelagic zone at night, and retreat to the mesopelagic zone during the day, which is known as diel vertical migration. These migrators can therefore avoid visual predators during the day and feed at night, while some of their predators also migrate up at night to follow the prey. There is so much biomass in this migration that sonar operators in World War II would regularly misinterpret the signal returned by this thick layer of plankton as a false sea floor.
Estimates of the global biomass of mesopelagic fishes range from 1 gigatonne based on net tows to 7–10 Gt based on measurements using active acoustics.

Virus and microbial ecology

Very little is known about the microbial community of the mesopelagic zone because it is a difficult part of the ocean to study. Recent work using DNA from seawater samples emphasized the importance of viruses and microbes role in recycling organic matter from the surface ocean, known as the microbial loop. These many microbes can get their energy from different metabolic pathways. Some are autotrophs, heterotrophs, and a 2006 study even discovered chemoautotrophs. This chemoautotrophic Archaea crenarchaeon Candidatus can oxidize ammonium as their energy source without oxygen, which could significantly impact the nitrogen and carbon cycles. One study estimates these ammonium-oxidizing bacteria, which are only 5% of the microbial population, can annually capture 1.1 Gt of organic carbon.
Microbial biomass and diversity typically decline exponentially with depth in the mesopelagic zone, tracking the general decline of food from above. The community composition varies with depths in the mesopelagic as different organisms are evolved for varying light conditions. Microbial biomass in the mesopelagic is greater at higher latitudes and decreases towards the tropics, which is likely linked to the differing productivity levels in the surface waters. Viruses however are very abundant in the mesopelagic, with around 1010 - 1012 every cubic meter, which is fairly uniform throughout the mesopelagic zone.