Barometer
A barometer is a scientific instrument that is used to measure air pressure. Pressure tendency, which is derived from barometric readings, can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis to help find surface troughs, pressure systems and frontal boundaries.
Barometers and pressure altimeters are essentially the same instrument, but used for different purposes. A pressure altimeter is used to estimate altitude by measuring the pressure of the atmosphere surrounding the altimeter and comparing the result to the expected atmospheric pressure at various altitudes, while a barometer is kept at a constant altitude and measures subtle pressure changes caused by weather and elements of weather. The average atmospheric pressure on the Earth's surface varies between 940 and 1040 hPa. The average atmospheric pressure at sea level is 1013 hPa.
Etymology
The word barometer is derived from the Ancient Greek , meaning "weight", and , meaning "measure".History
is usually credited with inventing the barometer in 1643, although the historian W. E. Knowles Middleton suggests the more likely date is 1644.Gasparo Berti, an Italian mathematician and astronomer, also built a rudimentary water barometer sometime between 1640 and 1644, but it was not a true barometer as it was not intended to move and record variable air pressure. French scientist and philosopher René Descartes described the design of an experiment to determine atmospheric pressure as early as 1631, but there is no evidence that he built a working barometer at that time. In 1668, Robert Hooke's marine barometer, made by Henry Hunt, was noticed, and efforts were made to make it sea-worthy.Baliani's siphon experiment
On 27 July 1630, Giovanni Battista Baliani wrote a letter to Galileo Galilei explaining an experiment he had made in which a siphon, led over a hill about 21 m high, failed to work. When the end of the siphon was opened in a reservoir, the water level in that limb would sink to about 10 m above the reservoir. Galileo responded with an explanation of the phenomenon: he proposed that it was the power of a vacuum that held the water up, and at a certain height the amount of water simply became too much and the force could not hold any more, like a cord that can support only so much weight. This was a restatement of the theory of horror vacui, which dates to Aristotle, and which Galileo restated as resistenza del vacuo.Berti's vacuum experiment
Galileo's ideas, presented in his Discorsi, reached Rome in December 1638. Physicists Gasparo Berti and father Raffaello Magiotti were excited by these ideas, and decided to seek a better way to attempt to produce a vacuum other than with a siphon. Magiotti devised such an experiment. Four accounts of the experiment exist, all written some years later. No exact date was given, but since Two New Sciences reached Rome in December 1638, and Berti died before January 2, 1644, science historian W. E. Knowles Middleton places the event to sometime between 1639 and 1643. Present were Berti, Magiotti, Jesuit polymath Athanasius Kircher, and Jesuit physicist Niccolò Zucchi.In brief, Berti's experiment consisted of filling with water a long tube that had both ends plugged, then standing the tube in a basin of water. The bottom end of the tube was opened, and water that had been inside of it poured out into the basin. However, only part of the water in the tube flowed out, and the level of the water inside the tube stayed at an exact level, which happened to be, the same height limit Baliani had observed in the siphon. What was most important about this experiment was that the lowering water had left a space above it in the tube which had no intermediate contact with air to fill it up. This seemed to suggest the possibility of a vacuum existing in the space above the water.
Evangelista Torricelli
, who was Galileo's amanuensis for the last three months of his life, interpreted the results of the experiments in a novel way. He proposed that the weight of the atmosphere, not an attracting force of the vacuum, held the water in the tube. In a letter to Michelangelo Ricci in 1644 concerning the experiments, he wrote:Many have said that a vacuum does not exist, others that it does exist in spite of the repugnance of nature and with difficulty; I know of no one who has said that it exists without difficulty and without a resistance from nature. I argued thus: If there can be found a manifest cause from which the resistance can be derived which is felt if we try to make a vacuum, it seems to me foolish to try to attribute to vacuum those operations which follow evidently from some other cause; and so by making some very easy calculations, I found that the cause assigned by me ought by itself alone to offer a greater resistance than it does when we try to produce a vacuum.
It was traditionally thought, especially by the Aristotelians, that the air did not have weight; that is, that the kilometers of air above the surface of the Earth did not exert any weight on the bodies below it. Even Galileo had accepted the weightlessness of air as a simple truth. Torricelli proposed that rather than an attractive force of the vacuum sucking up water, air did indeed have weight, which pushed on the water, holding up a column of it. He argued that the level that the water stayed at—c. 10.3 m above the water surface below—was reflective of the force of the air's weight pushing on the water in the basin, setting a limit for how far down the water level could sink in a tall, closed, water-filled tube. He viewed the barometer as a balance—an instrument for measurement—as opposed to merely an instrument for creating a vacuum, and since he was the first to view it this way, he is traditionally considered the inventor of the barometer, in the sense in which we now use the term.
Torricelli's mercury barometer
Because of rumors circulating in Torricelli's gossipy Italian neighborhood, which included that he was engaged in some form of sorcery or witchcraft, Torricelli realized he had to keep his experiment secret to avoid the risk of being arrested. He needed to use a liquid that was heavier than water, and from his previous association and suggestions by Galileo, he deduced that by using mercury, a shorter tube could be used. With mercury, which is about 14 times denser than water, a tube only 80 cm was now needed, not 10.5 m. Furthermore, Torricelli demonstrated that atmospheric pressure could support a column of mercury approximately 30 inches high.Blaise Pascal
In 1646, Blaise Pascal along with Pierre Petit, had repeated and perfected Torricelli's experiment after hearing about it from Marin Mersenne, who himself had been shown the experiment by Torricelli toward the end of 1644. Pascal further devised an experiment to test the Aristotelian proposition that it was vapours from the liquid that filled the space in a barometer. His experiment compared water with wine, and since the latter was considered more "spiritous", the Aristotelians expected the wine to stand lower. Pascal performed the experiment publicly, inviting the Aristotelians to predict the outcome beforehand. The Aristotelians predicted the wine would stand lower. It did not.First atmospheric pressure vs. altitude experiment
However, Pascal went even further to test the mechanical theory. If, as suspected by mechanical philosophers like Torricelli and Pascal, air had weight, the pressure would be less at higher altitudes. Therefore, Pascal wrote to his brother-in-law, Florin Perier, who lived near a mountain called the Puy de Dôme, asking him to perform a crucial experiment. Perier was to take a barometer up the Puy de Dôme and make measurements along the way of the height of the column of mercury. He was then to compare it to measurements taken at the foot of the mountain to see if those measurements taken higher up were in fact smaller. In September 1648, Perier carefully and meticulously carried out the experiment, and found that Pascal's predictions had been correct. The column of mercury stood lower as the barometer was carried to a higher altitude.Types
Water barometers
The concept that decreasing atmospheric pressure predicts stormy weather, postulated by Lucien Vidi, provides the theoretical basis for a weather prediction device called a "weather glass" or a "Goethe barometer". The French name, le baromètre Liègeois, is used by some English speakers. This name reflects the origins of many early weather glasses – the glass blowers of Liège, Belgium.The weather ball barometer consists of a glass container with a sealed body, half filled with water. A narrow spout connects to the body below the water level and rises above the water level. The narrow spout is open to the atmosphere. When the air pressure is lower than it was at the time the body was sealed, the water level in the spout will rise above the water level in the body; when the air pressure is higher, the water level in the spout will drop below the water level in the body. A variation of this type of barometer can be easily made at home.
Mercury barometers
A mercury barometer is an instrument used to measure atmospheric pressure in a certain location and has a vertical glass tube closed at the top sitting in an open mercury-filled basin at the bottom. Mercury in the tube adjusts until the weight of it balances the atmospheric force exerted on the reservoir. High atmospheric pressure places more force on the reservoir, forcing mercury higher in the column. Low pressure allows the mercury to drop to a lower level in the column by lowering the force placed on the reservoir. Since higher temperature levels around the instrument will reduce the density of the mercury, the scale for reading the height of the mercury is adjusted to compensate for this effect. The tube has to be at least as long as the amount dipping in the mercury + head space + the maximum length of the column.Torricelli documented that the height of the mercury in a barometer changed slightly each day and concluded that this was due to the changing pressure in the atmosphere. He wrote: "We live submerged at the bottom of an ocean of elementary air, which is known by incontestable experiments to have weight". Inspired by Torricelli, Otto von Guericke on 5 December 1660 found that air pressure was unusually low and predicted a storm, which occurred the next day.
The mercury barometer's design gives rise to the expression of atmospheric pressure in inches or millimeters of mercury. A torr was originally defined as 1 mmHg. The pressure is quoted as the level of the mercury's height in the vertical column. Typically, atmospheric pressure is measured between and of Hg. One atmosphere is equivalent to of mercury.
Design changes to make the instrument more sensitive, simpler to read, and easier to transport resulted in variations such as the basin, siphon, wheel, cistern, Fortin, multiple folded, stereometric, and balance barometers.
In 2007, a European Union directive was enacted to restrict the use of mercury in new measuring instruments intended for the general public, effectively ending the production of new mercury barometers in Europe. The repair and trade of antiques remained unrestricted.