Membrane distillation


Membrane distillation is a thermally driven separation process in which separation is driven by phase change. A hydrophobic membrane presents a barrier for the liquid phase, allowing the vapour phase to pass through the membrane's pores. The driving force of the process is a partial vapour pressure difference commonly triggered by a temperature difference.

Principle of membrane distillation

Most processes that use a membrane to separate materials rely on static pressure difference as the driving force between the two bounding surfaces, or a difference in concentration, or an electric field. The selectivity of a membrane can be due to the relation of the pore size to the size of the substance being retained, or its diffusion coefficient, or its electrical polarity. Membranes used for membrane distillation inhibit passage of liquid water while allowing permeability for free water molecules and thus, for water vapour.
These membranes are made of hydrophobic synthetic material and offer pores with a standard diameter between. As water has strong dipole characteristics, whilst the membrane fabric is non-polar, the membrane material is not wetted by the liquid. Even though the pores are considerably larger than the molecules, the high water surface tension prevents the liquid phase from entering the pores. A convex meniscus develops into the pore. This effect is named capillary action.
Amongst other factors, the depth of impression can depend on the external pressure load on the liquid. A dimension for the infiltration of the pores by the liquid is the contact angle Θ=90 – Θ'. As long as Θ < 90° and accordingly Θ' > 0° no wetting of the pores will take place. If the external pressure rises above the so-called liquid entry pressure, then Θ = 90°resulting in a bypass of the pore. The driving force which delivers the vapour through the membrane, in order to collect it on the permeate side as product water, is the partial water vapour pressure difference between the two bounding surfaces. This partial pressure difference is the result of a temperature difference between the two bounding surfaces. As can be seen in the image, the membrane is charged with a hot feed flow on one side and a cooled permeate flow on the other side. The temperature difference through the membrane, usually between 5 and 20 K, conveys a partial pressure difference which ensures that the vapour developing at the membrane surface follows the pressure drop, permeating through the pores and condensing on the cooler side.

Membrane distillation techniques

Many different membrane distillation techniques exist. The basic four techniques mainly differ by the arrangement of their distillate channel or the manner in which this channel is operated.
The following technologies are most common:
  • Direct Contact MD
  • Air Gap MD
  • Vacuum MD
  • Sweeping Gas MD
  • Vacuum multi-effect membrane distillation
  • Permeate Gap MD

    Direct-contact MD

In DCMD, both sides of the membrane are charged with liquid- hot feed water on the evaporator side and cooled permeate on the permeate side. The condensation of the vapour passing through the membrane happens directly inside the liquid phase at the membrane boundary surface. Since the membrane is the only barrier blocking the mass transport, relatively high surface related permeate flows can be achieved with DCMD. A disadvantage is the high sensible heat loss, as the insulating properties of the single membrane layer are low. However, a high heat loss between evaporator and condenser is also the result of the single membrane layer. This lost heat is not available to the distillation process, thus lowering the efficiency. Unlike other configurations of membrane distillation, in DCMD the cooling across the membrane is provided by permeate flow rather than feed preheating. Therefore, an external heat exchanger is also needed to recover heat from the permeate, and the high flow rate of the feed must be carefully optimized.

Air-gap MD

In air-gap MD, the evaporator channel resembles that in DCMD, whereas the permeate gap lies between the membrane and a cooled walling and is filled with air. The vapour passing through the membrane must additionally overcome this air gap before condensing on the cooler surface. The advantage of this method is the high thermal insulation towards the condenser channel, thus minimizing heat conduction losses. However, the disadvantage is that the air gap represents an additional barrier for mass transport, reducing the surface- related permeate output compared to DCMD. A further advantage over DCMD is that volatile substances with a low surface tension such as alcohol or other solvents can be separated from diluted solutions, due to the fact that there is no contact between the liquid permeate and the membrane with AGMD. AGMD is especially advantageous compared to alternatives at higher salinity. Variations on AGMD can include hydrophobic condensing surfaces or porous condensers for improved flux and energy efficiency. In AGMD, uniquely important design features include gap thickness, condensing surface hydrophobicity, gap spacer design, and tilt angle.

Sweeping-gas MD

Sweeping-gas MD, also known as air stripping, uses a channel configuration with an empty gap on the permeate side. This configuration is the same as in AGMD. Condensation of the vapour takes place outside the MD module in an external condenser. As with AGMD, volatile substances with a low surface tension can be distilled with this process.
The advantage of SWGMD over AGMD is the significant reduction of the barrier to the mass transport through forced flow. Hereby higher surface-related productwater mass flows can be achieved than with AGMD. A disadvantage of SWGMD caused by the gas component and therefore the higher total mass flow, is the necessity of a higher condenser capacity.
When using smaller gas mass flows there is a risk of the gas heating itself at the hot membrane surface, thus reducing the vapour pressure difference and therefore the driving force. One solution of this problem for SWGMD and for AGMD is the use of a cooled walling for the permeate channel, and maintaining temperature by flushing it with gas.

Vacuum MD

Vacuum MD contains an air gap channel configuration. Once it has passed through the membrane, the vapour is sucked out of the permeate channel and condenses outside the module as with SWGMD. VCMD and SWGMD can be applied for the separation of volatile substances from a watery solution or for the generation of pure water from concentrated salt water.
One advantage of this method is that undissolved inert gasses blocking the membrane pores are sucked out by the vacuum, leaving a larger effective membrane surface active. Furthermore, a reduction of the boiling point results in a comparable amount of product at lower overall temperatures and lower temperature differences through the membrane.
A lower required temperature difference leaves a lower total- and specific thermal energy demand. However, the generation of a vacuum, which must be adjusted to the salt water temperature, requires complex technical equipment and is therefore a disadvantage to this method. The electrical energy demand is a lot higher as with DCMD and AGMD. An additional problem is the increase of the pH value due to the removal of from the feed water. For vacuum membrane distillation to be efficient, it is often run in multistage configurations.

Permeate-gap MD

In the following, the principle channel configuration and operating method of a standard DCMD module as well as a DCMD module with separate permeate gap shall be explained. The design in the adjacent image depicts a flat channel configuration, but can also be understood as a schema for flat-, hollow fibre - or spiral wound modules.
The complete channel configuration consists of a condenser channel with inlet and outlet and an evaporator channel with inlet and outlet. These two channels are separated by the hydrophobic, micro porous membrane. For cooling, the condenser channel is flooded with fresh water and the evaporator e.g. with salty feed water. The coolant enters the condenser channel at a temperature of. After passing through the membrane, the vapour condenses in the cooling water, releasing its latent heat and leading to a temperature increase in the coolant. Sensible heat conduction also heats the cooling water through the surface of the membrane. Due to the mass transport through the membrane the mass flow in the evaporator decreases whilst the condenser channel increases by the same amount. The mass flow of pre-heated coolant leaves the condenser channel at a temperature of about and enters a heat exchanger, thus pre-heating the feed water. This feed water is then delivered to a further heat source and finally enters the evaporator channel of the MD module at a temperature of. The evaporation process extracts latent heat from the feed flow, which cools down the feed increasingly in flow direction. Additional heat reduction occurs due to sensible heat passing through the membrane. The cooled feed water leaves the evaporator channel at approximately 28 °C. Total temperature differences between condenser inlet and evaporator outlet and condenser inlet and evaporator outlet are about equal. In a PGMD module, the permeate channel is separated from the condenser channel by a condensation surface. This enables the direct use of a salt water feed as coolant, since it does not come into contact with the permeate. Considering this, the cooling-or feed water entering the condenser channel at a temperature T1 can now also be used to cool the permeate. Condensation of vapour takes place inside the liquid permeate. Pre-heated feed water that was used to cool the condenser can be conducted directly to a heat source for final heating, after leaving the condenser at a temperature T2. After it has reached temperature T3 it is guided into the evaporator. Permeate is extracted at temperature T5 and the cooled brine is discharged at temperature T4.
An advantage of PGMD over DCMD is the direct use of feed water as cooling liquid inside the module and therefore the necessity of only one heat exchanger to heat the feed before entering the evaporator. Hereby heat conduction losses are reduced and expensive components can be cut. A further advantage is the separation of permeate from coolant. Therefore, the permeate does not have to be extracted later in the process and the coolant's mass flow in the condenser channel remains constant. The low flow velocity of the permeate in the permeate gap is a disadvantage of this configuration, as it leads to a poor heat conduction from the membrane surface to the condenser walling. High temperatures on the permeate side's membrane bounding surface are the result of this effect, which lowers the vapour pressure difference and therefore the driving force of the process. However, it is beneficial, that the heat conduction losses through the membrane are also lowered by this effect. This poor gap heat conduction challenge is largely removed with a variant of PGMD called CGMD, or conductive gap membrane distillation, which adds thermally conductive spacers to the gaps. Compared to AGMD, in PGMD or CGMD, a higher surface related permeate output is achieved, as the mass flow is not additionally inhibited by the diffusion resistance of an air layer.