Mechanism of autism
The mechanisms of autism are the molecular and cellular processes believed to cause or contribute to the symptoms of autism. Multiple processes are hypothesized to explain different autistic features. These hypotheses include defects in synapse structure and function, reduced synaptic plasticity, disrupted neural circuit function, gut–brain axis dyshomeostasis, neuroinflammation, and altered brain structure or connectivity. Autism symptoms stem from maturation-related changes in brain systems. The mechanisms of autism are divided into two main areas: pathophysiology of brain structures and processes, and neuropsychological linkages between brain structures and behaviors, with multiple pathophysiologies linked to various autism behaviors.
Evidence suggests gut–brain axis abnormalities may contribute to autism. Studies propose that immune, gastrointestinal inflammation, autonomic nervous system dysfunction, gut microbiota alterations, and dietary metabolites may contribute to brain neuroinflammation and dysfunction. Additionally, enteric nervous system abnormalities could play a role in neurological disorders by allowing disease pathways from the gut to impact the brain.
Synaptic dysfunction also appears to be implicated in autism, with some mutations disrupting synaptic pathways involving cell adhesion. Evidence points to teratogens affecting the early developmental stages, suggesting autism arises very early, possibly within the first eight weeks after conception.
Neuroanatomical studies support that autism may involve abnormal neuronal growth and pruning, leading to brain enlargement in some areas and reduction in others. Functional neuroimaging studies show reduced activation in somatosensory cortices during theory of mind tasks in autistic individuals and highlight potential imbalances in neurotransmitters like glutamate and Γ-aminobutyric acid that may underlie autism's behavioral manifestations.
Pathophysiology
Unlike some brain disorders which have clear molecular hallmarks that can be observed in every affected individual, such as Alzheimer's disease or Parkinson's disease, autism does not have a unifying mechanism at the molecular, cellular, or systems level. The autism spectrum may comprise a small set of disorders that converge on a few common molecular pathways, or it may be a large set of disorders with diverse mechanisms. Autism appears to result from developmental factors that affect many or all functional brain systems. Some factors may disturb the timing of brain development rather than the final product.Listed below are some characteristic findings in ASD brains on molecular and cellular levels regardless of the specific genetic variation or mutation contributing to autism in a particular individual:
- Limbic system with smaller neurons that are more densely packed together. Given that the limbic system is the main center of emotions and memory in the human brain, this observation may explain social impairment in ASD.
- Fewer and smaller Purkinje neurons in the cerebellum. New research suggest a role of the cerebellum in emotional processing and language.
- Increased number of astrocytes and microglia in the cerebral cortex. These cells provide metabolic and functional support to neurons and act as immune cells in the nervous system, respectively.
- Increased brain size in early childhood causing macrocephaly in 15–20% of ASD individuals. The brain size however normalizes by mid-childhood. This variation in brain size in not uniform in the ASD brain with some parts like the frontal and temporal lobes being larger, some like the parietal and occipital lobes being normal sized, and some like cerebellar vermis, corpus callosum, and basal ganglia being smaller than neurotypical individuals.
- Cell adhesion molecules that are essential to formation and maintenance of connections between neurons, neuroligins found on postsynaptic neurons that bind presynaptic cell adhesion molecules, and proteins that anchor cell adhesion molecules to neurons are all found to be mutated in ASD.
- Loss of function mutations in genes relating to the function and development of the synapse. Some of those implicated include SHANK3, SCN2A, and PTEN.
Brain growth
Synapse dysfunction
and dendritic spine growth may be disrupted in autism due to impaired neurexin–neuroligin cell-adhesion signaling or dysregulated synthesis of synaptic proteins. Disrupted synaptic development may also contribute to epilepsy, which may explain why the two conditions are associated.Studies have suggested that excitatory–inhibitory networks may be imbalanced in autism.Neurotransmitters such as serotonin, dopamine, and glutamate have been implicated in autism. Fragile X, the most common genetic cause of autism, is linked to dysfunction of group I metabotropic glutamate receptors, leading some to consider their potential role in autism.
Altered circuit connectivity
The underconnectivity theory of autism posits that autistic people tend to have fewer high-level neural connections and less global synchronization, along with an excess of low-level processes.Functional connectivity studies have found both hypo- and hyperconnectivity in brains of autistic people. Hypoconnectivity is commonly observed for interhemispheric and cortico-cortical functional connectivity.
Some studies have found local overconnectivity in the cerebral cortex and weak functional connections between the frontal lobe and the rest of the cortex. Abnormal default mode network connectivity is often observed. Toggling between task-negative network activation and task-positive network activation may be less efficient, possibly reflecting a disturbance of self-referential thought. Such patterns of low function and aberrant activation in the brain may depend on whether the brain is performing social or nonsocial tasks.
Some studies have suggested that autism is a disorder of the association cortex.
Event-related potentials with respect to attention, orientation to auditory and visual stimuli, novelty detection, language and face processing, and information storage are altered in autistic individuals; several studies have found a preference for nonsocial stimuli. Magnetoencephalography studies have observed delayed processing of auditory signals in autistic children.
The mirror neuron system theory of autism hypothesizes that disrupted development of the MNS impairs autistic people's ability to imitate others, leading to core autistic features of social impairment and communication difficulties. In animals, the MNS activates when an animal performs an action or observes another animal perform the same action. The MNS may contribute to an individual's understanding of other people by enabling the modeling of their behavior via embodied simulation of their actions, intentions, and emotions. Several studies have tested this hypothesis by demonstrating structural abnormalities in MNS regions of individuals with ASD, delay in the activation in the core circuit for imitation in individuals with ASD, and a correlation between reduced MNS activity and severity of the syndrome in children with ASD. However, individuals with autism also have abnormal brain activation in many circuits outside the MNS and the MNS theory does not explain the normal performance of children with autism on imitation tasks that involve a goal or object.
Common copy number variation associations have suggested similarities between the mechanisms of autism and schizophrenia. For loci such as 16p11.2, 16p13.1, 22p11, and 22q13, deletion is associated with autism whereas duplication is associated with schizophrenia. Conversely, 1q21.1 and 22p11.2 duplication is associated with autism and deletion with schizophrenia.
It has been observed that people with ASD tend to have preferential processing of information on the left hemisphere compared to the right. The left hemisphere is associated with processing information related to details whereas the right hemisphere is associated with processing information in a more global and integrated sense that is essential for pattern recognition. For example, visual information like face recognition is normally processed by the right hemisphere which tends to integrate all information from an incoming sensory signal, whereas an ASD brain preferentially processes visual information in the left hemisphere where information tends to be processed for local details of the face rather than the overall configuration of the face. This left lateralization negatively impacts both facial recognition and spatial skills.
Inflammation
The immune system is thought to play an important role in autism. Children with autism have been found by researchers to have inflammation of both the peripheral and central immune systems as indicated by increased levels of pro-inflammatory cytokines and significant activation of microglia. Biomarkers of abnormal immune function have also been associated with increased impairments in behaviors that are characteristic of the core features of autism such as, deficits in social interactions and communication. Interactions between the immune system and the nervous system begin early during the embryonic stage of life, and successful neurodevelopment depends on a balanced immune response. It is thought that activation of a pregnant mother's immune system such as from environmental toxicants or infection can contribute to causing autism through causing a disruption of brain development. This is supported by recent studies that have found that infection during pregnancy is associated with an increased risk of autism.Some evidence suggests that gut–brain axis abnormalities may be involved by means of impaired serotonin signaling and inflammation. A 2015 review proposed that immune dysregulation, gastrointestinal inflammation, autonomic nervous system malfunction, gut microbiota alterations, and food metabolites may cause brain neuroinflammation and dysfunction. A 2016 review concluded that enteric nervous system abnormalities might play a role in neurological disorders such as autism.