Mechanical arm
A mechanical arm is a machine that usually mimics the action of a human arm. Mechanical arms are composed of multiple beams connected by hinges powered by actuators. One end of the arm is attached to a firm base while the other has a tool. They can be controlled by humans either directly or over a distance. A computer-controlled mechanical arm is called a robotic arm. However, a robotic arm is just one of many types of different mechanical arms.
Mechanical arms can be as simple as tweezers or as complex as prosthetic arms. In other words, if a mechanism can grab an object, hold an object, and transfer an object just like a human arm, it can be classified as a mechanical arm.
Recent advancements have been brought about to lead future improvements in the medical field with prosthetics and with the mechanical arm in general. When mechanical engineers build complex mechanical arms, the goal is for the arm to perform a task that ordinary human arms can not complete.
History
Robotic Arms
Researchers have classified the robotic arm by its industrial applications, medical applications, and technology, etc. It was first introduced in the late 1930s by William Pollard and Harold A. Roseland, where they developed a "sprayer" that had about five degrees of freedom and an electric control system. Pollard's was called “first position controlling apparatus.” William Pollard never designed or built his arm, but it was a base for other inventors in the future.In 1961 the Unimate was invented, evolving to the PUMA arm. In 1963, the Rancho arm was designed, along with many others in the future. Even though Joseph Engelberger marketed Unimate, George Devol invented the robotic arm. It focused on using Unimate for tasks harmful to humans. In 1959, a 2700-pound Unimate prototype was installed at the General Motors die-casting plant in Trenton, New Jersey. The Unimate 1900 series became the very first produced robotic arm for die-casting. During a very short period of time, had been produced at least 450 robotic arms which were being used. It still remains one of the most significant contributions in the last one hundred years. As years went by, technology evolved, helping to build better robotic arms. Not only did companies invent different robotic arms, but so did colleges. In 1969, Victor Scheinman from Stanford University invented the Stanford arm, where it had electronically powered arms that could move through six axes. Marvin Minsky, from MIT, built a robotic arm for the office of Naval Research, possibly for underwater explorations. This arm had twelve single degree freedom joints in this electric- hydraulic- high dexterity arm. Robots were initially created to perform a series of tasks that humans found boring, harmful, and tedious.
Prosthetics
Before the Modern Era
The history of prosthetic limbs came to be by such great inventors. The world's first and earliest functioning prosthetic body parts are two toes from Ancient Egypt. Because of their unique functionality, these toes are an example of a true prosthetic device. These toes carry at least forty percent of the body's weight. Most prosthetic limbs would be produced after there is intensive studying of a human being's form by using modern equipment. Prosthetic limbs were used during the war too, including during the late 1480s. A German knight, who served with the Holy Roman Emperor Charles V, was injured during the war. Even though prosthetic limbs were expensive, this particular limb was manufactured by an armor specialist. Soldiers were allowed to continue their career because of prosthetics. The fingers could grasp a shield, hold reins to horses, and even a quill when drafting an important document.Modern Era
As time passed, limb design started to focus on people's specialties as well. For example, a pianist would need a different type of mechanical arm than others. Their limbs would be widespread and their middle and ring fingers would be smaller than normal. In addition, an arm design of padded tips on the thumb and little finger would allow a pianist to span a series of notes while playing their instrument.Technology for the prosthetic limbs kept evolving after World War I. After the war, laborers would return to work, using either legs or the arms because of its ability to grip objects. This is one of the designs that remains unchanged over the past century. People with such prosthetics would do everyday things like driving a car, eating food, and much more.
Arms for Automotive Manufacturing
Without the mechanical arm, the production of cars would be extremely difficult. This problem was first solved in 1962 when the first mechanical arm was used in a “General Motors” factory. Using this mechanical arm, also known as an industrial robot, engineers were able to achieve difficult welding tasks. In addition, the removal of die-castings was another important step in improving the abilities of a mechanical arm. With such technology, engineers were able to easily remove unneeded metal underneath mold cavities. Stemming off these uses, welding started to become increasingly popular for mechanical arms.In 1979, the company Nachi refined the first motor-driven robot to perform spot welding. Spot welding is a very important process used in the creation of cars to join separate surfaces together. Soon enough, mechanical arms were being passed down to additional car companies.
As constant improvements were being made, the National University of Singapore decided to make even further advancements by inventing a mechanical arm that can lift up to 80 times its original weight. Not only did this arm expand its lift strength, but the arm could also extend to five times its original length. These advancements were first introduced in 2012 and car companies can greatly benefit from this new scientific knowledge.