List of small groups
The following list in mathematics contains the finite groups of small order up to group isomorphism.
Counts
For n = 1, 2, … the number of nonisomorphic groups of order n isFor labeled groups, see.
Glossary
Each group is named by Small Groups Library as Goi, where o is the order of the group, and i is the index used to label the group within that order.Common group names:
- Zn: the cyclic group of order n
- Dihn: the dihedral group of order 2n
- D2n: the dihedral group of order 2n, the same as Dihn
- K4: the Klein four-group of order 4, isomorphic to and Dih2
- Sn: the symmetric group of degree n, containing the n! permutations of n elements
- An: the alternating group of degree n, containing the even permutations of n elements, of order 1 for, and order n!/2 otherwise
- Dicn or Q4n: the dicyclic group of order 4n
- Q8: the quaternion group of order 8, also Dic2
The notation denotes the direct product of the two groups; Gn denotes the direct product of a group with itself n times. G ⋊ H denotes a semidirect product where H acts on G; this may also depend on the choice of action of H on G.
Abelian and simple groups are noted.
The identity element in the cycle graphs is represented by the black circle. The lowest order for which the cycle graph does not uniquely represent a group is order 16.
In the lists of subgroups, the trivial group and the group itself are not listed. Where there are several isomorphic subgroups, the number of such subgroups is indicated in parentheses.
Angle brackets
List of small abelian groups
The finite abelian groups are either cyclic groups, or direct products thereof; see Abelian group. The numbers of nonisomorphic abelian groups of orders n = 1, 2,... areFor labeled abelian groups, see.
| Order | Id. | Goi | Group | Non-trivial proper subgroups | Cycle graph | Properties |
| 1 | 1 | G11 | Z1 ≅ S1 ≅ A2 | – | 40px | Trivial. Cyclic. Alternating. Symmetric. Elementary. |
| 2 | 2 | G21 | Z2 ≅ S2 ≅ D2 | – | 40px | Simple. Symmetric. Cyclic. Elementary. |
| 3 | 3 | G31 | Z3 ≅ A3 | – | 40px | Simple. Alternating. Cyclic. Elementary. |
| 4 | 4 | G41 | Z4 ≅ Q4 | Z2 | 40px | Cyclic. |
| 4 | 5 | G42 | Z22 ≅ K4 ≅ D4 | Z2 | 40px | Elementary. Product. |
| 5 | 6 | G51 | Z5 | – | 40px | Simple. Cyclic. Elementary. |
| 6 | 8 | G62 | Z6 ≅ Z3 × Z2 | Z3, Z2 | 40px | Cyclic. Product. |
| 7 | 9 | G71 | Z7 | – | 40px | Simple. Cyclic. Elementary. |
| 8 | 10 | G81 | Z8 | Z4, Z2 | 40px | Cyclic. |
| 8 | 11 | G82 | Z4 × Z2 | Z22, Z4, Z2 | 40px | Product. |
| 8 | 14 | G85 | Z23 | Z22, Z2 | 40px | Product. Elementary. |
| 9 | 15 | G91 | Z9 | Z3 | 40px | Cyclic. |
| 9 | 16 | G92 | Z32 | Z3 | 40px | Elementary. Product. |
| 10 | 18 | G102 | Z10 ≅ Z5 × Z2 | Z5, Z2 | 40px | Cyclic. Product. |
| 11 | 19 | G111 | Z11 | – | 40px | Simple. Cyclic. Elementary. |
| 12 | 21 | G122 | Z12 ≅ Z4 × Z3 | Z6, Z4, Z3, Z2 | 40px | Cyclic. Product. |
| 12 | 24 | G125 | Z6 × Z2 ≅ Z3 × Z22 | Z6, Z3, Z2, Z22 | 40px | Product. |
| 13 | 25 | G131 | Z13 | – | 40px | Simple. Cyclic. Elementary. |
| 14 | 27 | G142 | Z14 ≅ Z7 × Z2 | Z7, Z2 | 40px | Cyclic. Product. |
| 15 | 28 | G151 | Z15 ≅ Z5 × Z3 | Z5, Z3 | 40px | Cyclic. Product. |
| 16 | 29 | G161 | Z16 | Z8, Z4, Z2 | 40px | Cyclic. |
| 16 | 30 | G162 | Z42 | Z2, Z4, Z22, | 40px | Product. |
| 16 | 33 | G165 | Z8 × Z2 | Z2, Z4, Z22, Z8, | Product. | |
| 16 | 38 | G1610 | Z4 × Z22 | Z2, Z4, Z22, Z23, | 40px | Product. |
| 16 | 42 | G1614 | Z24 ≅ K42 | Z2, Z22, Z23 | 40px | Product. Elementary. |
| 17 | 43 | G171 | Z17 | – | 40px | Simple. Cyclic. Elementary. |
| 18 | 45 | G182 | Z18 ≅ Z9 × Z2 | Z9, Z6, Z3, Z2 | 40px | Cyclic. Product. |
| 18 | 48 | G185 | Z6 × Z3 ≅ Z32 × Z2 | Z2, Z3, Z6, Z32 | Product. | |
| 19 | 49 | G191 | Z19 | – | 40px | Simple. Cyclic. Elementary. |
| 20 | 51 | G202 | Z20 ≅ Z5 × Z4 | Z10, Z5, Z4, Z2 | 40px | Cyclic. Product. |
| 20 | 54 | G205 | Z10 × Z2 ≅ Z5 × Z22 | Z2, K4, Z5, Z10 | Product. | |
| 21 | 56 | G212 | Z21 ≅ Z7 × Z3 | Z7, Z3 | 40px | Cyclic. Product. |
| 22 | 58 | G222 | Z22 ≅ Z11 × Z2 | Z11, Z2 | 40px | Cyclic. Product. |
| 23 | 59 | G231 | Z23 | – | 40px | Simple. Cyclic. Elementary. |
| 24 | 61 | G242 | Z24 ≅ Z8 × Z3 | Z12, Z8, Z6, Z4, Z3, Z2 | 40px | Cyclic. Product. |
| 24 | 68 | G249 | Z12 × Z2 ≅ Z6 × Z4 ≅ Z4 × Z3 × Z2 | Z12, Z6, Z4, Z3, Z2 | Product. | |
| 24 | 74 | G2415 | Z6 × Z22 ≅ Z3 × Z23 | Z6, Z3, Z2 | Product. | |
| 25 | 75 | G251 | Z25 | Z5 | Cyclic. | |
| 25 | 76 | G252 | Z52 | Z5 | Product. Elementary. | |
| 26 | 78 | G262 | Z26 ≅ Z13 × Z2 | Z13, Z2 | Cyclic. Product. | |
| 27 | 79 | G271 | Z27 | Z9, Z3 | Cyclic. | |
| 27 | 80 | G272 | Z9 × Z3 | Z9, Z3 | Product. | |
| 27 | 83 | G275 | Z33 | Z3 | Product. Elementary. | |
| 28 | 85 | G282 | Z28 ≅ Z7 × Z4 | Z14, Z7, Z4, Z2 | Cyclic. Product. | |
| 28 | 87 | G284 | Z14 × Z2 ≅ Z7 × Z22 | Z14, Z7, Z4, Z2 | Product. | |
| 29 | 88 | G291 | Z29 | – | Simple. Cyclic. Elementary. | |
| 30 | 92 | G304 | Z30 ≅ Z15 × Z2 ≅ Z10 × Z3 ≅ Z6 × Z5 ≅ Z5 × Z3 × Z2 | Z15, Z10, Z6, Z5, Z3, Z2 | Cyclic. Product. | |
| 31 | 93 | G311 | Z31 | – | Simple. Cyclic. Elementary. |