Safety-critical system
A safety-critical system or life-critical system is a system whose failure or malfunction may result in one of the following outcomes:
- death or serious injury to people
- loss or severe damage to equipment/property
- environmental harm
Risks of this sort are usually managed with the methods and tools of safety engineering. A safety-critical system is designed to lose less than one life per billion hours of operation. Typical design methods include probabilistic risk assessment, a method that combines failure mode and effects analysis with fault tree analysis. Safety-critical systems are increasingly computer-based.
Safety-critical systems are a concept often used together with the Swiss cheese model to represent how a threat can escalate to a major accident through the failure of multiple critical barriers. This use has become common especially in the domain of process safety, in particular when applied to oil and gas drilling and production both for illustrative purposes and to support other processes, such as asset integrity management and incident investigation.
Reliability regimens
Several reliability regimes for safety-critical systems exist:- Fail-operational systems continue to operate when their control systems fail. Examples of these include elevators, the gas thermostats in most home furnaces, and passively safe nuclear reactors. Fail-operational mode is sometimes unsafe. Nuclear weapons launch-on-loss-of-communications was rejected as a control system for the U.S. nuclear forces because it is fail-operational: a loss of communications would cause launch, so this mode of operation was considered too risky. This is contrasted with the fail-deadly behavior of the Perimeter system built during the Soviet era.
- Fail-soft systems are able to continue operating on an interim basis with reduced efficiency in case of failure. Most spare tires are an example of this: They usually come with certain restrictions and lead to lower fuel economy. Another example is the "Safe Mode" found in most Windows operating systems.
- Fail-safe systems become safe when they cannot operate. Many medical systems fall into this category. For example, an infusion pump can fail, and as long as it alerts the nurse and ceases pumping, it will not threaten the loss of life because its safety interval is long enough to permit a human response. In a similar vein, an industrial or domestic burner controller can fail, but must fail in a safe mode. Famously, nuclear weapon systems that launch-on-command are fail-safe, because if the communications systems fail, launch cannot be commanded. Railway signaling is designed to be fail-safe.
- Fail-secure systems maintain maximum security when they cannot operate. For example, while fail-safe electronic doors unlock during power failures, fail-secure ones will lock, keeping an area secure.
- Fail-Passive systems continue to operate in the event of a system failure. An example includes an aircraft autopilot. In the event of a failure, the aircraft would remain in a controllable state and allow the pilot to take over and complete the journey and perform a safe landing.
- Fault-tolerant systems avoid service failure when faults are introduced to the system. An example may include control systems for ordinary nuclear reactors. The normal method to tolerate faults is to have several computers continually test the parts of a system, and switch on hot spares for failing subsystems. As long as faulty subsystems are replaced or repaired at normal maintenance intervals, these systems are considered safe. The computers, power supplies and control terminals used by human beings must all be duplicated in these systems in some fashion.
Software engineering for safety-critical systems
Examples of safety-critical systems
Infrastructure
- Circuit breaker
- Emergency services dispatch systems
- Electricity generation, transmission and distribution
- Fire alarm
- Fire sprinkler
- Fuse
- Fuse
- Life-support systems
- Telecommunications
Medicine
- Heart-lung machines
- Anesthetic machines
- Mechanical ventilation systems
- Infusion pumps and Insulin pumps
- Radiation therapy machines
- Robotic surgery machines
- Defibrillator machines
- Pacemaker devices
- Dialysis machines
- Devices that electronically monitor vital functions
- Medical-imaging devices
- Even healthcare information systems have significant safety implications
Nuclear engineering
- Nuclear reactor control systems
Oil and gas production
- Process containment
- Well integrity
- Hull integrity
- Jacket and topside structures
- Lifting equipment
- Helidecks
- Mooring systems
- Fire and gas detection
- Critical instrumented functions
- Actuated isolation valves
- Pressure relief devices
- Blowdown valves and flare system
- Drilling well control
- Ventilation and heating, ventilation, and air conditioning
- Drainage systems
- Ballast systems
- Hull cargo tanks inerting system
- Heading control
- Ignition prevention
- Firewater pumps
- Firewater and foam distribution piping
- Firewater and foam monitors
- Deluge valves
- Gaseous fire-suppression systems
- Firewater hydrants
- Passive fire protection
- Temporary Refuge
- Escape routes
- Lifeboats and liferafts
- Personal survival equipment
Recreation
- Amusement rides
- Climbing equipment
- Parachutes
- Scuba equipment
- * Diving rebreather
- * Dive computer
Transport
Railway
- Railway signalling and control systems
- Platform detection to control train doors
- Automatic train stop
Automotive
- Airbag systems
- Braking systems
- Seat belts
- Power Steering systems
- Advanced driver-assistance systems
- Electronic throttle control
- Battery management system for hybrids and electric vehicles
- Electric park brake
- Shift by wire systems
- Drive by wire systems
- Park by wire
Aviation
- Air traffic control systems
- Avionics, particularly fly-by-wire systems
- Radio navigation
- Engine control systems
- Aircrew life-support systems
- Flight planning to determine fuel requirements for a flight
Spaceflight
- Human spaceflight vehicles
- Rocket range launch safety systems
- Launch vehicle safety
- Crew rescue systems
- Crew transfer systems