RoHS
The Restriction of Hazardous Substances Directive 2002/95/EC, short for Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment, was adopted in February 2003 by the European Union.
The initiative was to limit the amount of hazardous chemicals in electronics.
The RoHS 1 directive took effect on 1 July 2006, and is required to be enforced and became a law in each member state. This directive restricts the use of ten hazardous materials in the manufacture of various types of electronic and electrical equipment. In addition to the [|exceptions], there are [|exclusions] for products such as solar panels. It is closely linked with the Waste Electrical and Electronic Equipment Directive 2002/96/EC which sets collection, recycling and recovery targets for electrical goods and is part of a legislative initiative to solve the problem of huge amounts of toxic electronic waste. In speech, RoHS is often spelled out, or pronounced,,, or, and refers to the EU standard, unless otherwise qualified.
Details
Each European Union member state will adopt its own enforcement and implementation policies using the directive as a guide.RoHS is often referred to as the "lead-free directive", but it restricts the use of the following ten substances:
- Lead
- Mercury
- Cadmium
- Hexavalent chromium
- Polybrominated biphenyls
- Polybrominated diphenyl ether
- Bis phthalate
- Butyl benzyl phthalate
- Dibutyl phthalate
- Diisobutyl phthalate
Max for Cadmium: 0.01%
DEHP, BBP, DBP and DIBP were added as part of DIRECTIVE 2015/863 which was published on 31 March 2015.
PBB and PBDE are flame retardants used in several plastics. Hexavalent chromium is used in chrome plating, chromate coatings and primers, and in chromic acid.
The maximum permitted concentrations in non-exempt products are 0.1% or 1000 parts per million by weight. The restrictions are on each homogeneous material in the product, which means that the limits do not apply to the weight of the finished product, or even to a component, but to any single material that could be separated mechanically – for example, the sheath on a cable or the tinning on a component lead.
As an example, a radio is composed of a case, screws, washers, a circuit board, speakers, etc. The screws, washers, and case may each be made of homogenous materials, but the other components comprise multiple sub-components of many different types of material. For instance, a circuit board is composed of a bare printed circuit board, integrated circuits, resistors, capacitors, switches, etc. A switch is composed of a case, a lever, a spring, contacts, pins, etc., each of which may be made of different materials. A contact might be composed of a copper strip with a surface coating. A loudspeaker is composed of a permanent magnet, copper wire, paper, etc.
Everything that can be identified as a homogeneous material must meet the limit. So if it turns out that the case was made of plastic with 2,300 ppm PBB used as a flame retardant, then the entire radio would fail the requirements of the directive.
In an effort to close RoHS 1 loopholes, in May 2006 the European Commission was asked to review two currently excluded product categories for future inclusion in the products that must fall into RoHS compliance. In addition the commission entertains requests for deadline extensions or for exclusions by substance categories, substance location or weight. New legislation was published in the official journal in July 2011 which supersedes this exemption.
Note that batteries are not included within the scope of RoHS. However, in Europe, batteries are under the European Commission's 1991 Battery Directive, which was increased in scope and approved in the new battery directive, version 2003/0282 COD, which will be official when submitted to and published in the EU's Official Journal. While the first Battery Directive addressed possible trade barrier issues brought about by disparate European member states' implementation, the new directive more explicitly highlights improving and protecting the environment from the negative effects of the waste contained in batteries. It also contains a programme for more ambitious recycling of industrial, automotive, and consumer batteries, gradually increasing the rate of manufacturer-provided collection sites to 45% by 2016. It also sets limits of 5 ppm mercury and 20 ppm cadmium to batteries except those used in medical, emergency, or portable power-tool devices. Though not setting quantitative limits on quantities of lead, lead–acid, nickel, and nickel–cadmium in batteries, it cites a need to restrict these substances and provide for recycling up to 75% of batteries with these substances. There are also provisions for marking the batteries with symbols in regard to metal content and recycling collection information.
The directive applies to equipment as defined by a section of the WEEE directive. The following numeric categories apply:
- Large household appliances
- Small household appliances
- IT & telecommunications equipment
- Consumer equipment
- Lighting equipment – including light bulbs
- Electronic and electrical tools
- Toys, leisure, and sports equipment
- Medical devices
- Monitoring and control instruments
- Automatic dispensers
- Other EEE not covered by any of the categories above.
RoHS applies to these products in the EU whether made within the EU or imported. Certain exemptions apply, and these are updated on occasion by the EU.
Examples of product components containing restricted substances
RoHS restricted substances have been used in a broad array of consumer electronics products. Examples of components that have contained lead include:- paints and pigments
- PVC cables as a stabiliser
- solders
- printed circuit board finishes, leads, internal and external interconnects
- glass in television and photographic products
- metal parts
- lamps and bulbs
- batteries
- integrated circuits or microchips
Hazardous materials and the high-tech waste problem
RoHS and other efforts to reduce hazardous materials in electronics are motivated in part to address the global issue of consumer electronics waste. As newer technology arrives at an ever-increasing rate, consumers are discarding their obsolete products sooner than ever. This waste ends up in landfills and in countries like China to be "recycled".In the fashion-conscious mobile market, 98 million U.S. cell phones took their last call in 2005. All told, the EPA estimates that in the U.S. that year, between 1.5 and 1.9 million tons of computers, TVs, VCRs, monitors, cell phones, and other equipment were discarded. If all sources of electronic waste are tallied, it could total 50 million tons a year worldwide, according to the UN Environment Programme.
American electronics sent offshore to countries like Ghana in West Africa under the guise of recycling may be doing more harm than good. Not only are adult and child workers in these jobs being poisoned by heavy metals, but these metals are returning to the U.S. "The U.S. right now is shipping large quantities of leaded materials to China, and China is the world's major manufacturing center," Dr. Jeffrey Weidenhamer says, a chemistry professor at Ashland University in Ohio. "It's not all that surprising things are coming full circle and now we're getting contaminated products back."
Changing toxicity perceptions
In addition to the high-tech waste problem, RoHS reflects contemporary research over the past 50 years in biological toxicology that acknowledges the long-term effects of low-level chemical exposure on populations. New testing is capable of detecting much smaller concentrations of environmental toxicants. Researchers are associating these exposures with neurological, developmental, and reproductive changes.RoHS and other environmental laws are in contrast to historical and contemporary law that seek to address only acute toxicology, that is direct exposure to large amounts of toxic substances causing severe injury or death.