Salt (chemistry)


In chemistry, a salt or ionic compound is a chemical compound consisting of an assembly of positively charged ions and negatively charged ions, which results in a compound with no net electric charge. The constituent ions are held together by electrostatic forces termed ionic bonds.
The component ions in a salt can be either inorganic, such as chloride, or organic, such as acetate. Each ion can be either monatomic, such as sodium and chloride in sodium chloride, or polyatomic, such as ammonium and carbonate ions in ammonium carbonate. Salts containing basic ions hydroxide or oxide are classified as bases, such as sodium hydroxide and potassium oxide.
Individual ions within a salt usually have multiple near neighbours, so they are not considered to be part of molecules, but instead part of a continuous three-dimensional network. Salts usually form crystalline structures when solid.
Salts composed of small ions typically have high melting and boiling points, and are hard and brittle. As solids they are almost always electrically insulating, but when melted or dissolved they become highly conductive, because the ions become mobile. Some salts have large cations, large anions, or both. In terms of their properties, such species often are more similar to organic compounds.

History of discovery

In 1913 the structure of sodium chloride was determined by William Henry Bragg and his son William Lawrence Bragg. This revealed that there were six equidistant nearest neighbours for each atom, demonstrating that the constituents were not arranged in molecules or finite aggregates, but instead as a network with long-range crystalline order. Many other inorganic compounds were also found to have similar structural features. These compounds were soon described as being constituted of ions rather than neutral atoms, but proof of this hypothesis was not found until the mid-1920s, when X-ray reflection experiments, were performed.
Principal contributors to the development of a theoretical treatment of ionic crystal structures were Max Born, Fritz Haber, Alfred Landé, Erwin Madelung, Paul Peter Ewald, and Kazimierz Fajans. Born predicted crystal energies based on the assumption of ionic constituents, which showed good correspondence to thermochemical measurements, further supporting the assumption.

Formation

Many metals such as the alkali metals react directly with the electronegative halogens gases to form salts.
Solid salts can form upon evaporation of solvent from their solutions once the solution is supersaturated and the solid compound nucleates. This process occurs widely in nature and is the means of formation of the evaporite minerals.
Insoluble salts can be precipitated by mixing two solutions, one containing the cation and one containing the anion. Because all solutions are electrically neutral, the two solutions mixed must also contain counterions of the opposite charges. To ensure that these do not contaminate the precipitated salt, it is important to ensure they do not also precipitate. If the two solutions have hydrogen ions and hydroxide ions as the counterions, they will react with one another in what is called an acid–base reaction or a neutralization reaction to form water. Alternately the counterions can be chosen to ensure that even when combined into a single solution they will remain soluble as spectator ions.
If the solvent is water in either the evaporation or precipitation method of formation, in many cases the ionic crystal formed also includes water of crystallization, so the product is known as a hydrate, and can have very different chemical properties compared to the anhydrous material.
Molten salts will solidify on cooling to below their freezing point. This is sometimes used for the solid-state synthesis of complex salts from solid reactants, which are first melted together. In other cases, the solid reactants do not need to be melted, but instead can react through a solid-state reaction route. In this method, the reactants are repeatedly finely ground into a paste and then heated to a temperature where the ions in neighboring reactants can diffuse together during the time the reactant mixture remains in the oven. Other synthetic routes use a solid precursor with the correct stoichiometric ratio of non-volatile ions, which is heated to drive off other species.
In some reactions between highly reactive metals and highly electronegative halogen gases, or water, the atoms can be ionized by electron transfer, a process thermodynamically understood using the Born–Haber cycle.
Salts can be formed through a variety of reaction types, such as those between:
  • A base and an acid, e.g., NH3 + HCl → NH4Cl
  • A metal and an acid, e.g., Mg + H2SO4 → MgSO4 + H2
  • A metal and a non-metal, e.g., Ca + Cl2 → CaCl2
  • A base and an acid anhydride, e.g., 2 NaOH + Cl2O → 2 NaClO + H2O
  • An acid and a base anhydride, e.g., 2 HNO3 + Na2O → 2 NaNO3 + H2O
  • In the salt metathesis reaction where two different salts are mixed in water, their ions recombine, and the new salt is insoluble and precipitates. For example:
  • : Pb2 + Na2SO4 → PbSO4↓ + 2 NaNO3

    Bonding

Ions in salts are primarily held together by the electrostatic forces between the charge distribution of these bodies, and in particular, the ionic bond resulting from the long-ranged Coulomb attraction between the net negative charge of the anions and net positive charge of the cations. There is also a small additional attractive force from van der Waals interactions which contributes only around 1–2% of the cohesive energy for small ions. When a pair of ions comes close enough for their outer electron shells to overlap, a short-ranged repulsive force occurs, due to the Pauli exclusion principle. The balance between these forces leads to a potential energy well with minimum energy when the nuclei are separated by a specific equilibrium distance.
If the electronic structure of the two interacting bodies is affected by the presence of one another, covalent interactions also contribute to the overall energy of the compound formed. Salts are rarely purely ionic, i.e. held together only by electrostatic forces. The bonds between even the most electronegative/electropositive pairs such as those in caesium fluoride exhibit a small degree of covalency. Conversely, covalent bonds between unlike atoms often exhibit some charge separation and can be considered to have a partial ionic character. The circumstances under which a compound will have ionic or covalent character can typically be understood using Fajans' rules, which use only charges and the sizes of each ion. According to these rules, compounds with the most ionic character will have large positive ions with a low charge, bonded to a small negative ion with a high charge. More generally HSAB theory can be applied, whereby the compounds with the most ionic character are those consisting of hard acids and hard bases: small, highly charged ions with a high difference in electronegativities between the anion and cation. This difference in electronegativities means that the charge separation, and resulting dipole moment, is maintained even when the ions are in contact.
Although chemists classify idealized bond types as being ionic or covalent, the existence of additional types such as hydrogen bonds and metallic bonds, for example, has led some philosophers of science to suggest that alternative approaches to understanding bonding are required. This could be by applying quantum mechanics to calculate binding energies.

Structure

The lattice energy is the summation of the interaction of all sites with all other sites. For unpolarizable spherical ions, only the charges and distances are required to determine the electrostatic interaction energy. For any particular ideal crystal structure, all distances are geometrically related to the smallest internuclear distance. So for each possible crystal structure, the total electrostatic energy can be related to the electrostatic energy of unit charges at the nearest neighboring distance by a multiplicative constant called the Madelung constant that can be efficiently computed using an Ewald sum. When a reasonable form is assumed for the additional repulsive energy, the total lattice energy can be modelled using the Born–Landé equation, the Born–Mayer equation, or in the absence of structural information, the Kapustinskii equation.
Using an even simpler approximation of the ions as impenetrable hard spheres, the arrangement of anions in these systems are often related to close-packed arrangements of spheres, with the cations occupying tetrahedral or octahedral interstices. Depending on the stoichiometry of the salt, and the coordination of cations and anions, a variety of structures are commonly observed, and theoretically rationalized by Pauling's rules.
In some cases, the anions take on a simple cubic packing and the resulting common structures observed are:
Some ionic liquids, particularly with mixtures of anions or cations, can be cooled rapidly enough that there is not enough time for crystal nucleation to occur, so an ionic glass is formed.

Defects

Within any crystal, there will usually be some defects. To maintain electroneutrality of the crystals, defects that involve loss of a cation will be associated with loss of an anion, i.e. these defects come in pairs. Frenkel defects consist of a cation vacancy paired with a cation interstitial and can be generated anywhere in the bulk of the crystal, occurring most commonly in compounds with a low coordination number and cations that are much smaller than the anions. Schottky defects consist of one vacancy of each type, and are generated at the surfaces of a crystal, occurring most commonly in compounds with a high coordination number and when the anions and cations are of similar size. If the cations have multiple possible oxidation states, then it is possible for cation vacancies to compensate for electron deficiencies on cation sites with higher oxidation numbers, resulting in a non-stoichiometric compound. Another non-stoichiometric possibility is the formation of an F-center, a free electron occupying an anion vacancy. When the compound has three or more ionic components, even more defect types are possible. All of these point defects can be generated via thermal vibrations and have an equilibrium concentration. Because they are energetically costly but entropically beneficial, they occur in greater concentration at higher temperatures. Once generated, these pairs of defects can diffuse mostly independently of one another, by hopping between lattice sites. This defect mobility is the source of most transport phenomena within an ionic crystal, including diffusion and solid state ionic conductivity. When vacancies collide with interstitials, they can recombine and annihilate one another. Similarly, vacancies are removed when they reach the surface of the crystal. Defects in the crystal structure generally expand the lattice parameters, reducing the overall density of the crystal. Defects also result in ions in distinctly different local environments, which causes them to experience a different crystal-field symmetry, especially in the case of different cations exchanging lattice sites. This results in a different splitting of d-electron orbitals, so that the optical absorption can change with defect concentration.