Insulin (medication)
As a medication, insulin is any pharmaceutical preparation of the protein hormone insulin that is used to treat high blood glucose. Such conditions include type 1 diabetes, type 2 diabetes, gestational diabetes, and complications of diabetes such as diabetic ketoacidosis and hyperosmolar hyperglycemic states. Insulin is also used along with glucose to treat hyperkalemia. Typically it is given by injection under the skin, but some forms may also be used by injection into a vein or muscle. There are various types of insulin, suitable for various time spans. The types are often all called insulin in the broad sense, although in a more precise sense, insulin is identical to the naturally occurring molecule whereas insulin analogues have slightly different molecules that allow for modified time of action. It is on the World Health Organization's List of Essential Medicines. In 2023, it was the 157th most commonly prescribed medication in the United States, with more than 3million prescriptions.
Insulin can be made from the pancreas of pigs or cows. Human versions can be made either by modifying pig versions, or recombinant technology using mainly E. coli or Saccharomyces ''cerevisiae''. It comes in three main types: short–acting, intermediate-acting, and longer-acting.
Medical uses
Insulin is used to treat a number of diseases including diabetes and its acute complications such as diabetic ketoacidosis and hyperosmolar hyperglycemic states. It is also used along with glucose to treat high blood potassium levels. Use during pregnancy is relatively safe for the baby. Insulin was formerly used in a psychiatric treatment called insulin shock therapy.Side effects
Some side effects are hypoglycemia, hypokalemia, and allergic reactions. Allergy to insulin affected about 2% of people, of which most reactions are not due to the insulin itself but to preservatives added to insulin such as zinc, protamine, and meta-cresol. Most reactions are Type I hypersensitivity reactions and rarely cause anaphylaxis. A suspected allergy to insulin can be confirmed by skin prick testing, patch testing and occasionally skin biopsy. First line therapy against insulin hypersensitivity reactions include symptomatic therapy with antihistamines. The affected persons are then switched to a preparation that does not contain the specific agent they are reacting to or undergo desensitization.Cutaneous adverse effects
Other side effects may include pain or skin changes at the sites of injection. Repeated subcutaneous injection without site rotation can lead to lipohypertrophy and amyloidomas, which manifest as firm palpable nodules under the skin.
Effects of early routine use
Early initiation of insulin therapy for the long-term management of conditions such as type 2 diabetes would suggest that the use of insulin has unique benefits, however, with insulin therapy, there is a need to gradually raise the dose and the complexity of the regimen, as well as the likelihood of developing severe hypoglycemia which is why many people and their doctors are hesitant to begin insulin therapy in the early stage of disease management. Many obstacles associated with health behaviors also prevent people with type 2 diabetes mellitus from starting or intensifying their insulin treatment, including lack of motivation, lack of familiarity with or experience with treatments, and time restraints causing people to have high glycemic loads for extended periods of time prior to starting insulin therapy. This is why managing the side effects associated with long-term early routine use of insulin for type 2 diabetes mellitus can prove to be a therapeutic and behavioral challenge.Principles
Insulin is an endogenous hormone, which is produced by the pancreas.The insulin protein has been highly conserved across evolutionary time, and is present in both mammals and invertebrates. The insulin/insulin-like growth factor signalling pathway has been extensively studied in species including nematode worms, flies and mice. Its mechanisms of action are highly similar across species.
Both type 1 diabetes and type 2 diabetes are marked by a loss of pancreatic function, though to differing degrees. People who are affected with diabetes are referred to as diabetics. Many diabetics require an exogenous source of insulin to keep their blood sugar levels within a safe target range.
In 1916, Nicolae C. Paulescu succeeded in developing an aqueous pancreatic extract that normalized a diabetic dog. In 1921, he published 4 papers in the Society of Biology in Paris centering on the successful effects of the pancreatic extract in diabetic dogs. Research on the Role of the Pancreas in Food Assimilation by Paulescu was published in August 1921 in the Archives Internationales de Physiologie, Liège, Belgium. Initially, the only way to obtain insulin for clinical use was to extract it from the pancreas of another creature. Animal glands were obtainable as a waste product of the meatpacking industry. Insulin was derived primarily from cows and pigs . The making of eight ounces of purified insulin could require as much as two tons of pig parts. Insulin from these sources is effective in humans as it is highly similar to human insulin. Initially, lower preparation purity resulted in allergic reactions to the presence of non-insulin substances. Purity has improved steadily since the 1920s ultimately reaching purity of 99% by the mid-1970s thanks to high-pressure liquid chromatography methods. Minor allergic reactions still occur occasionally, even to synthetic "human" insulin varieties.
Beginning in 1982, biosynthetic "human" insulin has been manufactured for clinical use through genetic engineering techniques using recombinant DNA technology. Genentech developed the technique used to produce the first such insulin, Humulin, but did not commercially market the product themselves. Eli Lilly marketed Humulin in 1982. Humulin was the first medication produced using modern genetic engineering techniques in which actual human DNA is inserted into a host cell. The host cells are then allowed to grow and reproduce normally, and due to the inserted human DNA, they produce a synthetic version of human insulin. Manufacturers claim this reduces the presence of many impurities. However, the clinical preparations prepared from such insulins differ from endogenous human insulin in several important respects; an example is the absence of C-peptide which has in recent years been shown to have systemic effects itself.
Novo Nordisk has also developed a genetically engineered insulin independently using a yeast process.
According to a survey that the International Diabetes Federation conducted in 2002 on the access to and availability of insulin in its member countries, approximately 70% of the insulin that is currently sold in the world is recombinant, biosynthetic 'human' insulin. A majority of insulin used clinically today is produced this way, although clinical experience has provided conflicting evidence on whether these insulins are any less likely to produce an allergic reaction. Adverse reactions have been reported; these include loss of warning signs that patients may slip into a coma through hypoglycemia, convulsions, memory lapse and loss of concentration. However, the International Diabetes Federation's position statement from 2005 is very clear in stating that "there is NO overwhelming evidence to prefer one species of insulin over another" and " animal insulins remain a perfectly acceptable alternative."
Since January 2006, all insulins distributed in the US and some other countries are synthetic "human" insulins or their analogues. A special FDA importation process is required to obtain bovine or porcine derived insulin for use in the US, although there may be some remaining stocks of porcine insulin made by Lilly in 2005 or earlier, and porcine lente insulin is also sold and marketed under the brand name Vetsulin in the US for veterinary usage in the treatment of companion animals with diabetes.