Inquiry-based learning
Inquiry-based learning is a form of active learning that starts by posing questions, problems or scenarios. It contrasts with traditional education, which generally relies on the teacher presenting facts and their knowledge about the subject. Inquiry-based learning is often assisted by a facilitator rather than a lecturer. Inquirers will identify and research issues and questions to develop knowledge or solutions. Inquiry-based learning includes problem-based learning, and is generally used in small-scale investigations and projects, as well as research. The inquiry-based instruction is principally very closely related to the development and practice of thinking and problem-solving skills.
History
Inquiry-based learning is primarily a pedagogical method, developed during the discovery learning movement of the 1960s as a response to traditional forms of instruction—where people were required to memorize information from instructional materials, such as direct instruction and rote learning. The philosophy of inquiry based learning finds its antecedents in constructivist learning theories, such as the work of Piaget, Dewey, Vygotsky, and Freire among others, and can be considered a constructivist philosophy. Generating information and making meaning of it based on personal or societal experience is referred to as constructivism. Dewey's experiential learning pedagogy comprises the learner actively participating in personal or authentic experiences to make meaning from it. Inquiry can be conducted through experiential learning because inquiry values the same concepts, which include engaging with the content/material in questioning, as well as investigating and collaborating to make meaning. Vygotsky approached constructivism as learning from an experience that is influenced by society and the facilitator. The meaning constructed from an experience can be concluded as an individual or within a group.In the 1960s Joseph Schwab called for inquiry to be divided into three distinct levels. This was later formalized by Marshall Herron in 1971, who developed the Herron Scale to evaluate the amount of inquiry within a particular lab exercise. Since then, there have been a number of revisions proposed and inquiry can take various forms. There is a spectrum of inquiry-based teaching methods available.
Inquiry learning has been used as a teaching and learning tool for thousands of years, however, the use of inquiry within public education has a much briefer history. Ancient Greek and Roman educational philosophies focused much more on the art of agricultural and domestic skills for the middle class and oratory for the wealthy upper class. It was not until the Enlightenment, or the Age of Reason, during the late 17th and 18th century that the subject of Science was considered a respectable academic body of knowledge. Up until the 1900s the study of science within education had a primary focus on memorizing and organizing facts.
John Dewey, a well-known philosopher of education at the beginning of the 20th century, was the first to criticize the fact that science education was not taught in a way to develop young scientific thinkers. Dewey proposed that science should be taught as a process and way of thinking – not as a subject with facts to be memorized. While Dewey was the first to draw attention to this issue, much of the reform within science education followed the lifelong work and efforts of Joseph Schwab.
Joseph Schwab was an educator who proposed that science did not need to be a process for identifying stable truths about the world that we live in, but rather science could be a flexible and multi-directional inquiry driven process of thinking and learning.
Schwab believed that science in the classroom should more closely reflect the work of practicing scientists. Schwab developed three levels of open inquiry that align with the breakdown of inquiry processes that we see today.
- Students are provided with questions, methods and materials and are challenged to discover relationships between variables
- Students are provided with a question, however, the method for research is up to the students to develop
- Phenomena are proposed but students must develop their own questions and method for research to discover relationships among variables
Characteristics
Specific learning processes that people engage in during inquiry-learning include:- Creating questions of their own
- Obtaining supporting evidence to answer the question
- Explaining the evidence collected
- Connecting the explanation to the knowledge obtained from the investigative process
- Creating an argument and justification for the explanation
Levels
There are many different explanations for inquiry teaching and learning and the various levels of inquiry that can exist within those contexts. The article titled The Many Levels of Inquiry by Heather Banchi and Randy Bell clearly outlines four levels of inquiry.Level 1: Confirmation inquiry
The teacher has taught a particular science theme or topic. The teacher then develops questions and a procedure that guides students through an activity where the results are already known. This method is great to reinforce concepts taught and to introduce students into learning to follow procedures, collect and record data correctly and to confirm and deepen understandings.
Level 2: Structured inquiry
The teacher provides the initial question and an outline of the procedure. Students are to formulate explanations of their findings through evaluating and analyzing the data that they collect.
Level 3: Guided inquiry
The teacher provides only the research question for the students. The students are responsible for designing and following their own procedures to test that question and then communicate their results and findings.
Level 4: Open/true inquiry
Students formulate their own research question, design and follow through with a developed procedure, and communicate their findings and results. This type of inquiry is often seen in science fair contexts where students drive their own investigative questions.
Banchi and Bell explain that teachers should begin their inquiry instruction at the lower levels and work their way to open inquiry in order to effectively develop students' inquiry skills. Open inquiry activities are only successful if students are motivated by intrinsic interests and if they are equipped with the skills to conduct their own research study.
Open/true inquiry learning
An important aspect of inquiry-based learning is the use of open learning, as evidence suggests that only utilizing lower level inquiry is not enough to develop critical and scientific thinking to the full potential. Open learning has no prescribed target or result that people have to achieve. There is an emphasis on the individual manipulating information and creating meaning from a set of given materials or circumstances. In many conventional and structured learning environments, people are told what the outcome is expected to be, and then they are simply expected to 'confirm' or show evidence that this is the case.Open learning has many benefits. It means students do not simply perform experiments in a routine like fashion, but actually think about the results they collect and what they mean. With traditional non-open lessons there is a tendency for students to say that the experiment 'went wrong' when they collect results contrary to what they are told to expect. In open learning there are no wrong results, and students have to evaluate the strengths and weaknesses of the results they collect themselves and decide their value.
Open learning has been developed by a number of science educators including the American John Dewey and the German Martin Wagenschein. Wagenschein's ideas particularly complement both open learning and inquiry-based learning in teaching work. He emphasized that students should not be taught bald facts, but should understand and explain what they are learning. His most famous example of this was when he asked physics students to tell him what the speed of a falling object was. Nearly all students would produce an equation, but no students could explain what this equation meant. Wagenschein used this example to show the importance of understanding over knowledge.
Although both guided and open/true inquiry were found to promote science literacy and interest, each has its own advantages. While open/true inquiry may contribute to students' initiative, flexibility and adaptability better than guided inquiry in the long run, some claim that it may lead to high cognitive load and that guided inquiry is more efficient in terms of time and content learning.
Inquisitive learning
Sociologist of education Phillip Brown defined inquisitive learning as learning that is intrinsically motivated, as opposed to acquisitive learning that is extrinsically motivated. However, occasionally the term inquisitive learning is simply used as a synonym for inquiry-based learning.Neuroscience
The literature states that inquiry requires multiple cognitive processes and variables, such as causality and co-occurrence that enrich with age and experience.Kuhn, et al. used explicit training workshops to teach children in grades six to eight in the United States how to inquire through a quantitative study. By completing an inquiry-based task at the end of the study, the participants demonstrated enhanced mental models by applying different inquiry strategies. In a similar study, Kuhan and Pease completed a longitudinal quantitative study following a set of American children from grades four to six to investigate the effectiveness of scaffolding strategies for inquiry. Results demonstrated that children benefitted from the scaffolding because they outperformed the grade seven control group on an inquiry task.