International Commission on Radiological Protection
The International Commission on Radiological Protection is an independent, international, non-governmental organization, with the mission to protect people, animals, and the environment from the harmful effects of ionising radiation. Its recommendations form the basis of radiological protection policy, regulations, guidelines and practice worldwide.
The ICRP was effectively founded in 1928 at the second International Congress of Radiology in Stockholm, Sweden but was then called the International X-ray and Radium Protection Committee. In 1950 it was restructured to take account of new uses of radiation outside the medical area and re-named as the ICRP.
The ICRP is a sister organisation to the International Commission on Radiation Units and Measurements. In general terms ICRU defines the units, and ICRP recommends, develops and maintains the international system of radiological protection which uses these units.
Operation
The ICRP is a not-for-profit organization registered as a charity in the United Kingdom and has its scientific secretariat in Ottawa, Ontario, Canada.It is an independent, international organization with more than two hundred volunteer members from approximately thirty countries on six continents, who represent the world's leading scientists and policy makers in the field of radiological protection.
The International System of Radiological Protection has been developed by ICRP based on the current understanding of the science of radiation exposures and effects, and value judgements. These value judgements take into account societal expectations, ethics, and experience gained in application of the system.
The work of the Commission centres on the operation of four main committees:
;Committee 1 Radiation Effects: Committee 1 considers the effects of radiation action from the subcellular to population and ecosystem levels, including the induction of cancer, heritable and other diseases, impairment of tissue/organ function and developmental defects, and assesses implications for protection of people and the environment.
;Committee 2 Doses from Radiation Exposure: Committee 2 develops dosimetric methodology for the assessment of internal and external radiation exposures, including reference biokinetic and dosimetric models and reference data and dose coefficients, for use in the protection of people and the environment.
;Committee 3 Radiological Protection in Medicine: Committee 3 addresses protection of persons and unborn children when ionising radiation is used in medical diagnosis, therapy, and biomedical research, as well as protection in veterinary medicine.
;Committee 4 Application of the Commission's Recommendations: Committee 4 provides advice on the application of the Commission's recommendations for the protection of people and the environment in an integrated manner for all exposure situations.
Supporting these committees are Task Groups, established primarily to develop ICRP publications.
The ICRP's key output is the production of regular publications disseminating information and recommendations through the "Annals of the ICRP".
International Symposia
These have become one of the main means of communicating advances by the ICRP in the form of technical presentations and reports from various committees drawn from the international radiological protection community. They have been held every two years since 2011.- 1st International ICRP symposium 2011. Key areas of focus: Various.
- 2nd International ICRP symposium 2013. Key areas of focus: science, NORM, emergency preparedness and recovery, medicine, environment.
- 3rd International ICRP symposium 2015. Key areas of focus: Medicine, science and ethics
- 4th International ICRP symposium 2017. Key areas of focus: Recovery after nuclear accidents
- 5th International symposium 2019. Key areas of focus: Mines, Medicine and Space travel.
History
Early dangers
A year after Röntgen's discovery of X-rays in 1895, the American engineer Wolfram Fuchs gave what was probably the first radiation protection advice, but many early users of X-rays were initially unaware of the hazards and protection was rudimentary or non-existent.The dangers of radioactivity and radiation were not immediately recognized. The discovery of X‑rays had led to widespread experimentation by scientists, physicians, and inventors, but many people began recounting stories of burns, hair loss and worse in technical journals as early as 1896. In February 1896 Professor Daniel and Dr. Dudley of Vanderbilt University performed an experiment involving X-raying Dudley's head that resulted in his hair loss. A report by Dr. H.D. Hawks, a graduate of Columbia College, of his suffering severe hand and chest burns in an x-ray demonstration, was the first of many other reports in Electrical Review.
Many experimenters including Elihu Thomson at Thomas Edison's lab, William J. Morton, and Nikola Tesla also reported burns. Elihu Thomson deliberately exposed a finger to an X-ray tube over a period of time and suffered pain, swelling, and blistering. Other effects, including ultraviolet rays and ozone were sometimes blamed for the damage. Many physicians claimed that there were no effects from X-ray exposure at all.
Emergence of international standards – the ICR
Wide acceptance of ionizing radiation hazards was slow to emerge, and it was not until 1925 that the establishment of international radiological protection standards was discussed at the first International Congress of Radiology.The second ICR was held in Stockholm in 1928 and the ICRU proposed the adoption of the roentgen unit; and the 'International X-ray and Radium Protection Committee' was formed. Rolf Sievert was named Chairman, and a driving force was George Kaye of the British National Physical Laboratory.
The committee met for just a day at each of the ICR meetings in Paris in 1931, Zurich in 1934, and Chicago in 1937. At the 1934 meeting in Zurich, the Commission was faced with undue membership interference. The hosts insisted on having four Swiss participants, and the German authorities replaced the Jewish German member with another of their choice. In response to this, the Commission decided on new rules in order to establish full control over its future membership.
Birth of ICRP
After World War II the increased range and quantity of radioactive substances being handled as a result of military and civil nuclear programmes led to large additional groups of occupational workers and the public being potentially exposed to harmful levels of ionising radiation.Against this background, the first post-war ICR convened in London in 1950, but only two IXRPC members were still active from pre-war days; Lauriston Taylor and Rolf Sievert. Taylor was invited to revive and revise the IXRPC, which included renaming it as the International Commission on Radiological Protection. Sievert remained an active member, Sir Ernest Rock Carling was appointed as Chairman, and Walter Binks took over as Scientific Secretary because of Taylor's concurrent involvement with the sister organisation, ICRU.
At that meeting, six sub-committees were established:
- permissible dose for external radiation
- permissible dose for internal radiation
- protection against X rays generated at potentials up to 2 million volts
- protection against X rays above 2 million volts, and beta rays and gamma rays
- protection against heavy particles, including neutrons and protons
- disposal of radioactive wastes and handling of radioisotopes
In 1959, a formal relationship was established with the International Atomic Energy Agency, and subsequently with UNSCEAR, the International Labour Office, the Food and Agriculture Organization, the International Organization for Standardization, and UNESCO.
At the meeting in Stockholm in May 1962, the Commission also decided to reorganise the committee system in order to improve productivity and four committees were created:
- C1: Radiation effects;
- C2: Internal exposure;
- C3: External exposure;
- C4: Application of recommendations
- Committee 1 - Radiation effects Committee
- Committee 2 - Doses from radiation exposure
- Committee 3 - Protection in medicine
- Committee 4 - Application of the Commission's recommendations
- Committee 5 - Protection of the environment
Evolution of recommendations
Early recommendations were general guides on exposure and thereby dose limits, and it was not until the nuclear era that a greater degree of sophistication was required.
1951 recommendations
In the "1951 Recommendations" the commission recommended a maximum permissible dose of 0.5 roentgen in any 1 week in the case of whole-body exposure to X and gamma radiation at the surface, and 1.5 roentgen in any 1 week in the case of exposure of hands and forearms. Maximum permissible body burdens were given for 11 nuclides. At this time it was first stated that the purpose of radiological protection was that of avoiding deterministic effects from occupational exposures, and the principle of radiological protection was to keep individuals below the relevant thresholds.A first recommendation on restrictions of exposures of members of the general public appeared in the commission's part of the 1954 Recommendations. It was also stated that 'since no radiation level higher than the natural background can be regarded as absolutely "safe", the problem is to choose a practical level that, in the light of present knowledge, involves a negligible risk'. However, the Commission had not rejected the possibility of a threshold for stochastic effects. At this time the rad and rem were introduced for absorbed dose and RBE-weighted dose respectively.
At its 1956 meeting the concept of a controlled area and radiation safety officer were introduced, and the first specific advice was given for pregnant women.