Iodine-131
Iodine-131 is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production. It also plays a major role as a radioactive isotope present in nuclear fission products, and was a significant contributor to the health hazards from open-air atomic bomb testing in the 1950s, and from the Chernobyl disaster, as well as being a large fraction of the contamination hazard in the first weeks in the Fukushima nuclear crisis. This is because 131I is a major fission product of uranium and plutonium, comprising nearly 3% of the total products of fission.
Due to its beta decay, iodine-131 causes mutation and death in cells that it penetrates, and other cells up to several millimeters away. For this reason, high doses of the isotope are sometimes less dangerous than low doses, since they tend to kill thyroid tissues that would otherwise become cancerous as a result of the radiation. For example, children treated with moderate dose of 131I for thyroid adenomas had a detectable increase in thyroid cancer, but children treated with a much higher dose did not. Likewise, most studies of very-high-dose 131I for treatment of Graves' disease have failed to find any increase in thyroid cancer, even though there is linear increase in thyroid cancer risk with 131I absorption at moderate doses. Thus, iodine-131 is increasingly less employed in small doses in medical use, but increasingly is used only in large and maximal treatment doses, as a way of killing targeted tissues.
Iodine-131 can be "seen" by nuclear medicine imaging techniques whenever it is given for therapeutic use, since it is a strong emitter of gamma radiation. However, since the beta radiation causes tissue damage without contributing to any ability to see or "image" the isotope, other less-damaging radioisotopes of iodine such as iodine-123 are preferred in situations when only imaging is wanted. The isotope 131I is still occasionally used for purely diagnostic work, due to its low expense compared to other iodine radioisotopes. No increase in thyoid cancer has been seen from the small medical imaging doses of 131I. The low-cost availability of 131I, in turn, is due to the relative ease of creating 131I by neutron bombardment of natural tellurium in a nuclear reactor, then separating 131I out by various simple methods. By contrast, other iodine radioisotopes are usually created by far more expensive techniques, starting with cyclotron radiation of capsules of pressurized xenon gas.
Iodine-131 is also one of the most commonly used gamma-emitting radioactive industrial tracer. Radioactive tracer isotopes are injected with hydraulic fracturing fluid to determine the injection profile and location of fractures created by hydraulic fracturing.
Much smaller incidental doses of iodine-131 than those used in medical therapeutic procedures, are concluded by some studies to be the major cause of increased thyroid cancers after exposure to nuclear fission products. Other studies did not find a correlation.
Production
Most 131I production is from neutron irradiation of a natural tellurium target in a nuclear reactor. Irradiation of natural tellurium produces almost entirely 131I as the only radionuclide with a half-life longer than hours, since lighter isotopes of tellurium become heavier stable isotopes, or else stable antimony or iodine. However, the heaviest naturally occurring tellurium nuclide, 130Te absorbs a neutron to become tellurium-131, which beta decays with a half-life of 25 minutes to 131I.A tellurium compound can be irradiated while bound as an oxide to an ion exchange column, with evolved 131I then eluted into an alkaline solution. More commonly, powdered elemental tellurium is irradiated and then 131I separated from it by dry distillation of the iodine, which has a far higher vapor pressure. The element is then dissolved in a mildly alkaline solution in the standard manner, to produce 131I as iodide and hypoiodate.
131I is a fission product with a yield of 2.878% from uranium-235, and can be released in nuclear weapons tests and nuclear accidents. However, the short half-life means it is not present in significant quantities in cooled spent nuclear fuel, unlike iodine-129 whose half-life is nearly a billion times that of 131I.
It is discharged to the atmosphere in small quantities by some nuclear power plants.
Radioactive decay
131I decays with a half-life of 8.0249 days emitting beta particles and gamma rays. Most often, 131I most often expends its 971 keV of decay energy by transforming to stable xenon-131 in two steps, with gamma decay following rapidly after beta decay:The primary emissions of 131I decay are thus electrons with a maximal energy of 606 keV and gammas of 364 keV. Beta decay also produces an antineutrino, which carries off variable amounts of the energy. The electrons, due to their high mean energy have a tissue penetration of.
Effects of exposure
Iodine in food is absorbed by the body and preferentially concentrated in the thyroid where it is needed for the functioning of that gland. When 131I is present in high levels in the environment from radioactive fallout, it can be absorbed through contaminated food, and will also accumulate in the thyroid. As it decays, it may cause damage to the thyroid. The primary risk from exposure to 131I is an increased risk of radiation-induced cancer in later life. Other risks include the possibility of non-cancerous growths and thyroiditis.The risk of thyroid cancer in later life appears to diminish with increasing age at time of exposure. Most risk estimates are based on studies in which radiation exposures occurred in children or teenagers. When adults are exposed, it has been difficult for epidemiologists to detect a statistically significant difference in the rates of thyroid disease above that of a similar but otherwise-unexposed group.
The risk can be mitigated by taking iodine supplements, raising the total amount of iodine in the body and, therefore, reducing uptake and retention in the face and chest and lowering the relative proportion of radioactive iodine. However, such supplements were not consistently distributed to the population living nearest to the Chernobyl nuclear power plant after the disaster, though they were widely distributed to children in Poland.
Within the US, the highest 131I fallout doses occurred during the 1950s and early 1960s to children having consumed fresh milk from sources contaminated as the result of above-ground testing of nuclear weapons. The National Cancer Institute provides additional information on the health effects from exposure to 131I in fallout, as well as individualized estimates, for those born before 1971, for each of the 3070 counties in the US. The calculations are taken from data collected regarding fallout from the nuclear weapons tests conducted at the Nevada Test Site.
On 27 March 2011, the Massachusetts Department of Public Health reported that 131I was detected in very low concentrations in rainwater from samples collected in Massachusetts, and that this likely originated from the Fukushima power plant. Farmers near the plant dumped raw milk, while testing in the United States found 0.8 pico-curies per liter of iodine-131 in a milk sample, but the radiation levels were 5,000 times lower than the FDA's "defined intervention level".
The levels were expected to drop relatively quickly