Hygrometer
A hygrometer is an instrument that measures humidity: that is, how much water vapor is present. Humidity measurement instruments usually rely on measurements of some other quantities, such as temperature, pressure, mass, and mechanical or electrical changes in a substance as moisture is absorbed. By calibration and calculation, these measured quantities can be used to indicate the humidity. Modern electronic devices use the temperature of condensation, or they sense changes in electrical capacitance or resistance.
The maximum amount of water vapor that can be present in a given volume varies greatly with temperature; at low temperatures a lower mass of water per unit volume can remain as vapor than at high temperatures. Thus a change in the temperature changes the relative humidity.
A prototype hygrometer was invented by Leonardo da Vinci in 1480. Major improvements occurred during the 1600s; Francesco Folli invented a more practical version of the device, and Robert Hooke improved a number of meteorological devices, including the hygrometer. A more modern version was created by Swiss polymath Johann Heinrich Lambert in 1755. Later, in the year 1783, Swiss physicist and geologist Horace Bénédict de Saussure invented a hygrometer that uses a stretched human hair as its sensor.
In the late 17th century, some scientists called humidity-measuring instruments hygroscopes; that word is no longer in use, but hygroscopic and hygroscopy, which derive from it, still are.
Classical hygrometer
Ancient hygrometers
Crude hygrometers were devised and developed during the Shang dynasty in Ancient China to study weather. The Chinese used a bar of charcoal and a lump of earth: its dry weight was taken, then compared with its damp weight after being exposed in the air. The differences in weight were used to tally the humidity level.Other techniques were applied using mass to measure humidity, such as when the air was dry, the bar of charcoal would be light, while when the air was humid, the bar of charcoal would be heavy. By hanging a lump of earth on one end of a staff and a bar of charcoal on the other end and attaching a fixed lifting string to the middle point to make the staff horizontal in dry air, an ancient hygrometer was made.
Metal-paper coil type
The metal-paper coil hygrometer is very useful for giving a dial indication of humidity changes. It appears most often in inexpensive devices, and its accuracy is limited, with variations of 10% or more. In these devices, water vapor is absorbed by a salt-impregnated paper strip attached to a metal coil, causing the coil to change shape. These changes cause an indication on a dial. There is usually a metal needle on the front of the gauge that points to a scale.Hair tension hygrometers
These devices use a human or animal hair under some tension. The hair is hygroscopic ; its length changes with humidity, and the length change may be magnified by a mechanism and indicated on a dial or scale. Swiss physicist and geologist Horace Bénédict de Saussure was the first to build such a hygrometer, in 1783. The traditional folk art device known as a weather house also works on this principle.The pulley is connected to an index which moves over a graduated scale. The instrument can be made more sensitive by removing oils from the hair, such as by first soaking the hair in diethyl ether.
Psychrometer (wet-and-dry-bulb thermometer)
A psychrometer, or a wet and dry-bulb thermometer, consists of two calibrated thermometers, one that is dry and one that is kept moist with distilled water on a sock or wick. At temperatures above the freezing point of water, evaporation of water from the wick lowers the temperature, such that the wet-bulb thermometer will be at a lower temperature than that of the dry-bulb thermometer. When the air temperature is below freezing, however, the wet-bulb must be covered with a thin coating of ice, in order to be accurate. As a result of the heat of sublimation, the wet-bulb temperature will eventually be lower than the dry bulb, although this may take many minutes of continued use of the psychrometer.Relative humidity is computed from the ambient temperature, shown by the dry-bulb thermometer and the difference in temperatures as shown by the wet-bulb and dry-bulb thermometers. Relative humidity can also be determined by locating the intersection of the wet and dry-bulb temperatures on a psychrometric chart. The dry and wet thermometers coincide when the air is fully saturated, and the greater the difference the drier the air. Psychrometers are commonly used in meteorology, and in the heating, ventilation, and air conditioning industry for proper refrigerant charging of residential and commercial air conditioning systems.
Sling psychrometer
A sling psychrometer, which uses thermometers attached to a handle, is manually spun in free air flow until both temperatures stabilize. This is sometimes used for field measurements but is being replaced by more convenient electronic sensors. A whirling psychrometer uses the same principle, but the two thermometers are fitted into a device that resembles a ratchet or football rattle.Chilled mirror dew point hygrometer
Dew point is the temperature at which a sample of moist air at constant pressure reaches water vapor saturation. At this saturation temperature, further cooling results in condensation of water. Chilled mirror dewpoint hygrometers are some of the most precise instruments commonly available. They use a chilled mirror and optoelectronic mechanism to detect condensation on the mirror's surface. The temperature of the mirror is controlled by electronic feedback to maintain a dynamic equilibrium between evaporation and condensation, thus closely measuring the dew point temperature. An accuracy of 0.2 °C is attainable with these devices, which correlates at typical office environments to a relative humidity accuracy of about ±1.2%. Older chilled-mirrors used a metallic mirror that needed cleaning and skilled labor. Newer implementations of chilled-mirrors use highly polished surfaces that do not require routine cleaning.More recently, spectroscopic chilled-mirrors have been introduced. Using this method, the dew point is determined with spectroscopic light detection which ascertains the nature of the condensation. This method avoids many of the pitfalls of the previous chilled-mirrors and is capable of operating drift free.
Chilled-mirrors remain the reference measurement for calibration of other hygrometers. This is due to their fundamental first-principle nature that refers to the core of condensation physics and measures temperature, which is one of the base quantities of the International System of Quantities.
Modern hygrometers
Capacitive
When cost, space, or fragility are important, other types of electronic sensors are used, at the price of lower accuracy. Capacitive hygrometers measure the effect of humidity on the dielectric constant of a polymer or a metal oxide. When calibrated, their accuracy at relative humidities between 5% and 95% is ±2% RH; uncalibrated, this is two to three times worse. Capacitive sensors are robust against effects such as condensation and temporary high temperatures, but subject to contamination, drift and aging effects. They are, however, suitable for many applications.Resistive
In resistive hygrometers, the change in electrical resistance of a material due to humidity is measured. Typical materials are salts and conductive polymers. Resistive sensors are less sensitive than capacitive sensors – the change in material properties is less, so they require more complex circuitry. The material properties also tend to depend both on humidity and temperature, which means in practice that the sensor must be combined with a temperature sensor. The accuracy and robustness against condensation vary depending on the chosen resistive material. Robust, condensation-resistant sensors exist with an accuracy of up to ±3% RH.Thermal
In thermal hygrometers, the change in thermal conductivity of air due to humidity is measured. These sensors measure absolute humidity rather than relative humidity.Gravimetric
A gravimetric hygrometer extracts the water from the air and weighs it separately, for example by weighing a desiccant before and after it has absorbed the water. The temperature, pressure and volume of the resulting dry gas are also measured, providing enough information to calculate the amount of water per mole of gas.This is considered the most accurate primary method of measuring absolute humidity, and national standards based on it have been developed in US, UK, EU and Japan. However, the inconvenience of using such devices means they are usually only used to calibrate less accurate instruments, called Transfer Standards.