Ergonomics


Ergonomics, also known as Human Factors or Human Factors Engineering, is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data, and methods to design in order to optimize human well-being and overall system performance. It involves the application of psychological and physiological principles within the domains of engineering and design, encompassing products, processes, and systems. The primary goals of human factors engineering are to reduce human error, increase productivity and overall system performance, and enhance safety, health and comfort. A specific focus of this field is the interaction between the human and other sociotechnical elements.
The field applies theories, principles and data from a variety of primary or pure disciplines, such as psychology, sociology, engineering, biomechanics, industrial design, physiology, sociotechnical systems, human-computer interaction, anthropometry, interaction design, visual design, user experience, and user interface design. Human factors research employs methods and approaches from these and other knowledge disciplines to study human behavior and generate data relevant to human-system interface technology to achieve previously stated goals. In studying and sharing learning on the design of equipment, devices, and processes that fit the human body and its cognitive abilities, the two terms, "human factors" and "ergonomics", are essentially synonymous as to their referent and meaning in current literature.
As defined by the International Ergonomics Association, the principal domains of specialization include: Physical ergonomics, which is concerned with human anatomical, anthropometric, physiological and biomechanical characteristics as they relate to physical activity, Cognitive ergonomics, which is concerned with mental processes, such as perception, memory, reasoning, and motor response, as they affect interactions among humans and other elements of a system.  , and Organizational ergonomics is concerned with the optimization of sociotechnical systems, including their organizational structures, policies, and processes.
Human factors engineering is relevant in the design of such things as safe furniture and easy-to-use interfaces to machines and equipment. Proper ergonomic design is necessary to prevent repetitive strain injuries and other musculoskeletal disorders, which can develop over time and can lead to long-term disability. Human factors and ergonomics are concerned with the "fit" between the user, equipment, and environment or "fitting a job to a person" or "fitting the task to the man". It accounts for the user's capabilities and limitations in seeking to ensure that tasks, functions, information, and the environment suit that user.
To assess the fit between a person and the technology being used, human factors specialists or ergonomists consider the job being performed and the demands on the user; the equipment used ; and the information used. Ergonomics draws on many disciplines in its study of humans and their environments, including anthropometry, biomechanics, mechanical engineering, industrial engineering, industrial design, information design, kinesiology, physiology, cognitive psychology, industrial and organizational psychology, and space psychology.

Etymology

The term ergonomics first entered the modern lexicon when Polish scientist Wojciech Jastrzębowski used the word in his 1857 article Rys ergonomji czyli nauki o pracy, opartej na prawdach poczerpniętych z Nauki Przyrody. The French scholar Jean-Gustave Courcelle-Seneuil, apparently without knowledge of Jastrzębowski's article, used the word with a slightly different meaning in 1858. The introduction of the term to the English lexicon is widely attributed to British psychologist Hywel Murrell, at the 1949 meeting at the UK's Admiralty, which led to the foundation of The Ergonomics Society. He used it to encompass the studies in which he had been engaged during and after World War II.
The expression human factors is a predominantly North American term which has been adopted to emphasize the application of the same methods to non-work-related situations. A "human factor" is a physical or cognitive property of an individual or social behavior specific to humans that may influence the functioning of technological systems. The terms "human factors" and "ergonomics" are essentially synonymous.

Domains of specialization

According to the International Ergonomics Association, within the discipline of ergonomics there exist domains of specialization. These comprise three main fields of research: physical, cognitive, and organizational ergonomics.
There are many specializations within these broad categories. Specializations in the field of physical ergonomics may include visual ergonomics. Specializations within the field of cognitive ergonomics may include usability, human–computer interaction, and user experience engineering.
Some specializations may cut across these domains: Environmental ergonomics is concerned with human interaction with the environment as characterized by climate, temperature, pressure, vibration, light. The emerging field of human factors in highway safety uses human factors principles to understand the actions and capabilities of road users—car and truck drivers, pedestrians, cyclists, etc.—and use this knowledge to design roads and streets to reduce traffic collisions. Driver error is listed as a contributing factor in 44% of fatal collisions in the United States, so a topic of particular interest is how road users gather and process information about the road and its environment, and how to assist them to make the appropriate decision.
New terms are being generated all the time. For instance, "user trial engineer" may refer to a human factors engineering professional who specializes in user trials. Although the names change, human factors professionals apply an understanding of human factors to the design of equipment, systems and working methods to improve comfort, health, safety, and productivity.

Physical ergonomics

is concerned with human anatomy, and some of the anthropometric, physiological, and biomechanical characteristics as they relate to physical activity. Physical ergonomic principles have been widely used in the design of both consumer and industrial products for optimizing performance and preventing/treating work-related disorders by reducing the mechanisms behind mechanically induced acute and chronic musculoskeletal injuries/disorders. Risk factors such as localized mechanical pressures, force and posture in a sedentary office environment lead to injuries attributed to an occupational environment. Physical ergonomics is important to those diagnosed with physiological ailments or disorders such as arthritis or carpal tunnel syndrome. Pressure that is insignificant or imperceptible to those unaffected by these disorders may be very painful, or render a device unusable, for those who are. Many ergonomically designed products are also used or recommended to treat or prevent such disorders, and to treat pressure-related chronic pain.
One of the most prevalent types of work-related injuries is musculoskeletal disorder. Work-related musculoskeletal disorders result in persistent pain, loss of functional capacity and work disability, but their initial diagnosis is difficult because they are mainly based on complaints of pain and other symptoms. Every year, 1.8 million U.S. workers experience WRMDs and nearly 600,000 of the injuries are serious enough to cause workers to miss work. Certain jobs or work conditions cause a higher rate of worker complaints of undue strain, localized fatigue, discomfort, or pain that does not go away after overnight rest. These types of jobs are often those involving activities such as repetitive and forceful exertions; frequent, heavy, or overhead lifts; awkward work positions; or use of vibrating equipment. The Occupational Safety and Health Administration has found substantial evidence that ergonomics programs can cut workers' compensation costs, increase productivity and decrease employee turnover. Mitigation solutions can include both short term and long-term solutions. Short and long-term solutions involve awareness training, positioning of the body, furniture and equipment and ergonomic exercises. Sit-stand stations and computer accessories that provide soft surfaces for resting the palm as well as split keyboards are recommended. Additionally, resources within the HR department can be allocated to provide assessments to employees to ensure the above criteria are met. Therefore, it is important to gather data to identify jobs or work conditions that are most problematic, using sources such as injury and illness logs, medical records, and job analyses.
Innovative workstations that are being tested include sit-stand desks, height adjustable desk, treadmill desks, pedal devices and cycle ergometers. In multiple studies these new workstations resulted in decreased waist circumference and improved psychological well-being. However a significant number of additional studies have seen no marked improvement in health outcomes.
With the emergence of collaborative robots and smart systems in manufacturing environments, the artificial agents can be used to improve physical ergonomics of human co-workers. For example, during human–robot collaboration the robot can use biomechanical models of the human co-worker in order to adjust the working configuration and account for various ergonomic metrics, such as human posture, joint torques, arm manipulability and muscle fatigue. The ergonomic suitability of the shared workspace with respect to these metrics can also be displayed to the human with workspace maps through visual interfaces.