Hiwegi Formation


The Hiwegi Formation is a geological formation on Rusinga Island in Kenya preserving fossils dating to the Early Miocene period. The Hiwegi Formation is known for the well preserved plant fossils it preserves, which indicate a tropical forest environment that underwent wet and dry periods. The middle members of the formation in particular indicate a brief period in which conditions were notably dryer with a more open environment compared to older and younger units. Some of the formation's fauna, such as an early ancestor of the modern aye-aye and a chameleon of the genus Calumma, link Miocene East Africa to modern day Madagascar.

History

The first discovery of fossil material by western researchers was documented in the early 20th century in the form of a British colonial report on the East Africa Protectorate. Excavations for fossils began in the 1930s with the work of Louis Leakey, followed by the British-Kenya Miocene Expedition. A major factor in the exploration of Rusinga Island was the discovery of several specimens originally assigned to the stem-hominoid Proconsul. Further interest for the formation was created due to the presence of ample non-primate fossil mammals, as well as a vast collection of fossil plants.

Geography

Outcrops of the Hiwegi Formation are found across Rusinga Island, an island at the eastern end of Lake Victoria within Kenyan territory. The island itself is situated close to the mouth of the Winam Gulf. The Hiwegi Formation has outcrops across the islands, in particular in the area north-east of Mbita Point. Additional outcrops are found around the mountain Lugongo in the center of the island, Waregi Hills in the east as well as near Kiahera and Kaswanga on the islands north-western shore.

Geology and Stratigraphy

The Hiwegi Formation is part of the larger Rusinga Group. During the Miocene the sediments now forming Rusinga Island were deposited on the flanks of the Kisingiri Volcano, which had formed in the early Miocene. Two hypotheses seek to explain the volcano's influence on the sediments. Drake et al. hypothesize that the Hiwegi Formation, alongside the Kiahera and Rusinga Agglomerate were deposited during early eruptions of the Kisingiri Volcano, prior to a period of silence during which the Kulu Formation was deposited and a second period of eruptions later. Bestland et al. meanwhile suggest that the Kisingiri Volcano experienced up to three periods of activity, with the strata of the Hiwegi Formation being deposited in the second and third period of volcanic activity. The formation generally underlies the younger Kulu Formation and overlies the Rusinga Agglomerate. However at Waregi Hills, in the east of the island, the formation overlies the Ombonya Beds which are found nowhere else on Rusinga. The sediments in this region are overlain by the Kiangata Agglomerate and the Lunene Lavas.
The formation is divided into four members.
  • Kaswanga Point Member
  • Grit Member
  • Fossil Bed Member
  • Kibanga Member
K–Ar dating suggests a mean age of 17.8 million years for the formation. which correlates with the Burdigalian stage of the Miocene. In accordance with this method, the sediments of the Hiwegi Formation are thought to have been deposited over a short period of time, approximately 500.000 years. However dating of the formation has been met with difficulty due to the loss of certain minerals due to Diagenesis, the absence of other minerals important for dating and the effects of the Kisingiri volcano, which erupted through Precambrian sediments. Using Ar-Ar dating rather than K-Ar dating yields different results, still correlating to the Burdigalian but with a longer timespan dating from 20 to 17 million years ago.

Paleoenvironment

Early studies on the paleoenvironment of the Hiwegi Formation resulted in a variety of contradicting hypothesis, suggesting environments ranging from tropical rainforest to semi-arid habitats. Later research consistently concluded that these mixed results were caused by imprecise sampling, using fossil material from different parts of Rusinga Island corresponding with different ages and treating them as being contemporary. Subsequently, scientists focused on much narrower regions, resulting in more consistent and precise results that showed a distinct change in environment between the different members of the formation. Among the most in depth works on the paleoenvironment was a publication by Baumgartner and Peppe from 2021. In this publication the authors analysed new material from the R3 and Kiahera Hills localities while comparing the material to prior work and material from the R5 locality.
  • Kaswanga Point Member
  • Grit Member
  • Kibanga Member

    Paleofauna

The following fauna list is primarily based on the list published by Michel and colleagues in 2020, which incorporates prior work by Pickford.

Reptiles

Birds

Mammalia

Afrotheria

Artiodactyla

Carnivora

Eulipotyphla

Glires

Hyaenodonta

Perissodactyla

Primates