Hyperkalemia
Hyperkalemia is an elevated level of potassium in the blood. Normal potassium levels are between 3.5 and 5.0mmol/L with levels above 5.5mmol/L defined as hyperkalemia. Typically hyperkalemia does not cause symptoms. Occasionally when severe it can cause palpitations, muscle pain, muscle weakness, or numbness. Hyperkalemia can cause an abnormal heart rhythm which can result in cardiac arrest and death.
Common causes of hyperkalemia include kidney failure, hypoaldosteronism, and rhabdomyolysis. A number of medications can also cause high blood potassium including mineralocorticoid receptor antagonists NSAIDs, potassium-sparing diuretics, angiotensin receptor blockers, and angiotensin converting enzyme inhibitors. The severity is divided into mild, moderate, and severe. High levels can be detected on an electrocardiogram, though the absence of ECG changes does not rule out hyperkalemia. The measurement properties of ECG changes in predicting hyperkalemia are not known. Pseudohyperkalemia, due to breakdown of cells during or after taking the blood sample, should be ruled out.
Initial treatment in those with ECG changes is salts, such as calcium gluconate or calcium chloride. Other medications used to rapidly reduce blood potassium levels include insulin with dextrose, salbutamol, and sodium bicarbonate. Medications that might worsen the condition should be stopped, and a low-potassium diet should be started. Measures to remove potassium from the body include diuretics such as furosemide, potassium-binders such as polystyrene sulfonate and sodium zirconium cyclosilicate, and hemodialysis. Hemodialysis is the most effective method.
Hyperkalemia is rare among those who are otherwise healthy. Among those who are hospitalized, rates are between 1% and 2.5%. It is associated with an increased mortality, whether due to hyperkalaemia itself or as a marker of severe illness, especially in those without chronic kidney disease. The word hyperkalemia comes from hyper- 'high' + kalium 'potassium' + -emia 'blood condition'.
Signs and symptoms
The symptoms of an elevated potassium level are generally few and nonspecific. Nonspecific symptoms may include feeling tired, numbness, and weakness. Occasionally, palpitations and shortness of breath may occur. Hyperventilation may indicate a compensatory response to metabolic acidosis, which is one of the possible causes of hyperkalemia. Often, however, the problem is detected during screening blood tests for a medical disorder, or after hospitalization for complications such as cardiac arrhythmia or sudden cardiac death. High levels of potassium have been associated with cardiovascular events.Causes
Ineffective elimination
is a major cause of hyperkalemia. This is especially pronounced in acute kidney injury where the glomerular filtration rate and tubular flow are markedly decreased, characterized by reduced urine output. This can lead to a dramatically elevated potassium in conditions of increased cell breakdown, as the potassium is released from the cells and cannot be eliminated in the kidneys. In chronic kidney disease, hyperkalemia occurs as a result of reduced aldosterone responsiveness and reduced sodium and water delivery in distal tubules.Medications that interfere with urinary excretion by inhibiting the renin–angiotensin system are one of the most common causes of hyperkalemia. Examples of medications that can cause hyperkalemia include ACE inhibitors, angiotensin receptor blockers, non-selective beta blockers, and calcineurin inhibitor immunosuppressants such as ciclosporin and tacrolimus. For potassium-sparing diuretics, such as amiloride and triamterene; both the drugs block epithelial sodium channels in the collecting tubules, thereby preventing potassium excretion into urine. Spironolactone acts by competitively inhibiting the action of aldosterone. NSAIDs such as ibuprofen, naproxen, or celecoxib inhibit prostaglandin synthesis, leading to reduced production of renin and aldosterone, causing potassium retention. The antibiotic trimethoprim and the antiparasitic medication pentamidine inhibits potassium excretion, which is similar to mechanism of action by amiloride and triamterene.
Mineralocorticoid deficiency or resistance can also cause hyperkalemia. Primary adrenal insufficiency are: Addison's disease and congenital adrenal hyperplasia .
- Type IV renal tubular acidosis
- Gordon's syndrome , a rare genetic disorder caused by defective modulators of salt transporters, including the thiazide-sensitive Na-Cl cotransporter.
Excessive release from cells
Insulin deficiency can cause hyperkalemia as the hormone insulin increases the uptake of potassium into the cells. Hyperglycemia can also contribute to hyperkalemia by causing hyperosmolality in extracellular fluid, increasing water diffusion out of the cells, and causing potassium to move alongside water out of the cells. The co-existence of insulin deficiency, hyperglycemia, and hyperosmolality is often seen in those affected by diabetic ketoacidosis. Apart from diabetic ketoacidosis, other causes that reduce insulin levels, such as the use of the medication octreotide, and fasting, which can also cause hyperkalemia. Increased tissue breakdown such as rhabdomyolysis, burns, or any cause of rapid tissue necrosis, including tumor lysis syndrome can cause the release of intracellular potassium into blood, causing hyperkalemia.
Beta2-adrenergic agonists act on beta-2 receptors to drive potassium into the cells. Therefore, beta blockers can raise potassium levels by blocking beta-2 receptors. However, the rise in potassium levels is not marked unless other co-morbidities are present. Examples of drugs that can raise the serum potassium are non-selective beta-blockers such as propranolol and labetalol. Beta-1 selective blockers such as metoprolol do not increase serum potassium levels.
Exercise can cause a release of potassium into the bloodstream by increasing the number of potassium channels in the cell membrane. The degree of potassium elevation varies with the degree of exercise, which ranges from 0.3 meq/L in light exercise to 2 meq/L in heavy exercise, with or without accompanying ECG changes or lactic acidosis. However, peak potassium levels can be reduced by prior physical conditioning, and potassium levels are usually reversed several minutes after exercise. High levels of adrenaline and noradrenaline have a protective effect on the cardiac electrophysiology because they bind to beta 2 adrenergic receptors, which, when activated, extracellularly decrease potassium concentration.
Hyperkalemic periodic paralysis is an autosomal dominant clinical condition where there is a mutation in the gene located at 17q23 that regulates the production of protein SCN4A. SCN4A is an important component of sodium channels in skeletal muscles. During exercise, sodium channels normally open to allow the influx of sodium into the muscle cells for depolarization to occur. But in hyperkalemic periodic paralysis, sodium channels are slow to close after exercise, causing excessive influx of sodium and displacement of potassium out of the cells.
Rare causes of hyperkalemia are discussed as follows. Acute digitalis overdose, such as digoxin toxicity, may cause hyperkalemia through the inhibition of sodium-potassium-ATPase pump. Massive blood transfusion can cause hyperkalemia, especially in infants and patients with low glomerular filtration rate due to leakage of potassium out of the red blood cells during storage. Giving succinylcholine to people with conditions such as burns, trauma, infection, prolonged immobilisation can cause hyperkalemia due to widespread activation of acetylcholine receptors rather than a specific group of muscles. Arginine hydrochloride is used to treat refractory metabolic alkalosis. The arginine ions can enter cells and displace potassium out of the cells, causing hyperkalemia. Calcineurin inhibitors such as cyclosporine, tacrolimus, diazoxide, and minoxidil can cause hyperkalemia. Box jellyfish venom can also cause hyperkalemia.