HP 3000


The HP 3000 series is a family of 16-bit and 32-bit minicomputers from Hewlett-Packard. It was designed to be the first minicomputer with full support for time-sharing in the hardware and the operating system, features that had mostly been limited to mainframes, or retrofitted to existing systems like Digital's PDP-11, on which RSTS/E, IAS, and Unix were implemented. First introduced in 1972, the last models reached end-of-life in 2010, making it among the longest-lived machines of its generation.
The original HP 3000 hardware was withdrawn from the market in 1973 to address performance problems and OS stability. After reintroduction in 1974, it went on to become a reliable and powerful business system, one that regularly won HP business from companies that had been using IBM's mainframes. Hewlett-Packard's initial naming referred to the computer as the System/3000, and then called it the HP 3000.
The HP 3000 originally used a 16-bit CISC stack machine processor architecture, first implemented with Transistor-transistor logic, and later with Silicon on Sapphire chips beginning with the Series 33 in 1979. In the early 1980s, HP began development of a new RISC processor, which emerged as the PA-RISC platform. The HP 3000 CPU was reimplemented as an emulator running on PA-RISC and a recompiled version of the MPE operating system. The RISC-based systems were known as the "XL" versions, while the earlier CISC models retroactively became the "Classic" series. The two sold in tandem for a short period, but the XL series largely took over in 1988. Identical machines running HP-UX instead of MPE XL were known as the HP 9000.
HP initially announced the systems would be designated to be at end-of-life at HP in 2006, but extended that several times to 2010. The systems are no longer built or supported by the manufacturer, although independent companies support the systems.

History

HP 2000

While looking for a computer system to control ever-more-complex test equipment, HP briefly considered buying Digital Equipment Corporation. They were ultimately unimpressed with Ken Olsen's demands and did not attempt a deal. They later found a small company, DSI, working for Union Carbide, that had essentially "stretched" DEC's PDP-8 from 12 to 16-bits. HP purchased DSI and merged it into its Dymec division. The DSI design became the basis for the HP 2116A, introduced in 1966, initially marketed as a "test and instrumentation computer".
To their surprise, HP found that the machine was selling well in the business market and other non-lab uses. This led to a series of updated versions with better input/output to handle business workflows while removing some of the expansion capability needed only in the lab setting. The much smaller 2114 was particularly popular in non-lab settings. All of the 211x models were later updated to use semiconductor memory instead of core memory, leading to the 2100 family of 1971.
In 1968, the line was expanded with the HP 2000, a series of machines that were made up of collections of parts from the HP 211x lines, with most systems using a low-end 2114 CPU as a terminal controller and high-end CPU like the 2116 as the main processor. The systems ran HP Time-Shared BASIC and could support between 16 and 32 users simultaneously depending on the model. The machines were an immediate success, quickly becoming one of the best-selling systems in the time-sharing market, and propelling HP to become the third-largest minicomputer vendor.

Alpha and Omega

As the success of the HP 2000 series became clear, in 1969 the designers in Cupertino Lab decided to begin the development of machines dedicated to the office role, as opposed to the HP 2000, which was made up of various bits and pieces never originally designed for the task. Two basic systems were outlined, the "Alpha" was essentially an HP 2100 built using newer components and improved memory handling, while "Omega" was a much larger 32-bit design that would support large numbers of users.
Initially, the two systems were to be released at about the same time. However, almost all development took place within Omega, and few, if any, engineers were active on Alpha during 1969. In contrast to the 16-bit Alpha, Omega would be a 32-bit computer with up to 4 MB of main memory shared among up to four central processing units. The CPUs were designed to be programmed in a high level language, like the successful models from Burroughs that were programmed in a custom systems programming language rather than assembler. Support for multiprogramming and memory protection would be built in.
As development continued, the project appeared to be too large for HP to complete using internal funding. This would require the company to take on external debt, which management considered too risky. In the fall of 1970, Tom Perkins was promoted to Corporate Development and decided to cancel the Omega project. This resulted in several employees wearing black-velvet armbands to mourn the death of the project, and some dismay over being reassigned to "just another 16-bit machine."
By this time, the small amount of development on Alpha had changed the nature of the project significantly. Originally conceived as an updated HP 2100, it had become essentially a small Omega, adopting its virtual memory and stack machine design that supported high level languages, but limited to a 16-bit design with a maximum of 64 kWord main memory, only a single accumulator, and lacking Omega's powerful input/output systems.
When the plan to continue the development of Alpha was presented, George Newman, who replaced Perkins as the General Manager of the computer division, was concerned that the team was once again designing a machine that could not be delivered. Management was eventually convinced of the merits of the design, and the External Reference Specifications were published in July 1970.

MPE

Prior minicomputers were generally used in a fashion similar to modern microcomputers, used by a single user, and often dedicated to a single particular task like operating machinery. This was true for many contemporary designs like the PDP-8 and Data General Nova. It was the HP 2000's ability to perform timesharing that made it a success in a market filled with otherwise similar machines. The ability to support multiple users running different programs was previously limited to mainframe computers, and a further expansion of this capability was a key design concept for the original Omega.
When Alpha emerged as an Omega-like design, it initially followed the same model of multi-user support, which was in turn based on the HP 2000 concept. In this model, the main CPU does not handle user interaction, which is the task of the front-end processor. This allows the main operating system to be greatly simplified, simply loading up user programs as they appear from the front-end, running them in a round-robin fashion with other users' programs, and then delivering the results. In most respects this was a batch processing system, with much of the complexity of multi-user support being isolated in the separate front-end processor.
As development re-started on Alpha, this concept was re-examined and the decision was made to expand the operating system to support multiprogramming directly. This resulted in the system becoming three-in-one, with the main portion being dedicated to timesharing but also offering real-time support and batch mode. The resulting system, ultimately known as Multi-Programming Executive, would be among the most advanced of its era. When the ten groups within the operating system team came together to describe their section of the system, they found that it was too large to fit in memory, let alone have room for user programs. To make it fit, the programmers began a marathon effort to shrink the system requirements.

Announcement and initial marketing

The system was announced at the Fall Joint Computer Conference in November 1971. By early 1972, the system was up and running with three prototype machines completed. However, MPE development was by this time far behind schedule. This led to a February 1972 memo outlining the development schedule with various features being delivered over time. Ultimately the realtime support was dropped, and none of the dates on the memo were met.
Meanwhile, a turf war had broken out between the engineering lab and the marketing department, who were actively trying to sell the system. It got to the point where "People from marketing were banned from the lab." Engineers continued to provide performance estimates to marketing, which would pass these along to customers, even though the engineers were aware they were inaccurate.
Increasing concern among upper management led to the May 1972 formation of the Systems Management Group, who would work within the engineering labs as an internal marketing team and drive the development according to customer needs. Among the changes implemented, Jim Peachy was hired to do performance testing on the system. Peachy had previously worked on the first timesharing systems at Dartmouth College, and had since worked at General Electric and Memorex. After only three days he pronounced that there was "absolutely no way" the machine would meet the performance requirements being quoted by sales.

First deliveries, recall

As a result of the MPE delays, the ship date was pushed back from August to November 1972, and MPE was reduced solely to timesharing support, with additional features slated to arrive through 1973.
The November date was held firm, and eventually, someone put up posters claiming "November is a happening", referring to the contemporary "happening" movement in performance art. The first machine was shipped to the Lawrence Hall of Science in Berkeley on November 1, although as one engineer, Frank Hublou, noted, "they should have put it on the truck, drove it around the block, and brought the machine back."
After setup, it was found the machine would only support one or two users before slowing to a crawl, and it crashed every 10 to 20 minutes. Hublou's statement came true when the machine was "immediately returned." In a training session that December, a new version of MPE was able to run four users and crashed only once every two hours. The system was continually patched to keep it running as new bugs were found. Machines continued to be shipped, both to customers as well as companies that were considering purchases. These invariably ended poorly, unable to support more than four users. The schedule for MPE features continued to be pushed back, and the estimated number of machine sales continued to be reduced.
By this time, the development of an HP 2000 replacement had been underway for 5 years and had cost the company $20 million. The problems were not going unnoticed and ultimately ended up with Bill Hewlett. Hewlett asked Barney Oliver to take over the division, but he refused, and Paul Ely was sent instead in his place. Ely quickly ended production of the machines and, in a move still mentioned in historical works to this day, recalled all of the machines that had been shipped out. Dave Packard sent a memo to everyone on the team, today known simply as the "Wow Ouch memo".
Ed McCracken went back to the customers and told them point-blank that the machines would not be available until the fall of 1973, and that the machines would only support four to six users. Some accepted the offer of an HP 2000 in place of their orders, while others broke down and cried. One customer threatened to sue the company, but were put off by the personal intervention of Hewlett who stated he would do everything in his power to fix the problems.