Governing equation
The governing equations of a mathematical model describe how the values of the unknown variables change when one or more of the known variables change.
Physical systems can be modeled phenomenologically at various levels of sophistication, with each level capturing a different degree of detail about the system. A governing equation represents the most detailed and fundamental phenomenological model currently available for a given system.
For example, at the coarsest level, a beam is just a 1D curve whose torque is a function of local curvature. At a more refined level, the beam is a 2D body whose stress-tensor is a function of local strain-tensor, and strain-tensor is a function of its deformation. The equations are then a PDE system. Note that both levels of sophistication are phenomenological, but one is deeper than the other. As another example, in fluid dynamics, the Navier-Stokes equations are more refined than Euler equations.
As the field progresses and our understanding of the underlying mechanisms deepens, governing equations may be replaced or refined by new, more accurate models that better represent the system's behavior. These new governing equations can then be considered the deepest level of phenomenological model at that point in time.
Mass balance
A mass balance, also called a material balance, is an application of conservation of mass to the analysis of physical systems. It is the simplest governing equation, and it is simply a budget over the quantity in question:Differential equation
Physics
The governing equations in classical physics that arelectured
at universities are listed below.
- balance of mass
- balance of momentum
- balance of angular momentum
- balance of energy
- balance of entropy
- Maxwell-Faraday equation for induced electric field
- Ampére-Maxwell equation for induced magnetic field
- Gauss equation for electric flux
- Gauss equation for magnetic flux
Classical continuum mechanics
Darcy's law of groundwater flow has the form of a volumetric flux caused by a pressure gradient. A flux in classical mechanics is normally not a governing equation, but usually a defining equation for transport properties. Darcy's law was originally established as an empirical equation, but is later shown to be derivable as an approximation of Navier-Stokes equation combined with an empirical composite friction force term. This explains the duality in Darcy's law as a governing equation and a defining equation for absolute permeability.
The non-linearity of the material derivative in balance equations in general, and the complexities of Cauchy's momentum equation and Navier-Stokes equation makes the basic equations in classical mechanics exposed to establishing of simpler approximations.
Some examples of governing differential equations in classical continuum mechanics are
- Hele-Shaw flow
- Plate theory
- * Kirchhoff–Love plate theory
- * Mindlin–Reissner plate theory
- Vortex shedding
- Annular fin
- Astronautics
- Finite volume method for unsteady flow
- Acoustic theory
- Precipitation hardening
- Kelvin's circulation theorem
- Kernel function for solving integral equation of surface radiation exchanges
- Nonlinear acoustics
- Large eddy simulation
- Föppl–von Kármán equations
- Timoshenko beam theory
Biology
- Lotka-Volterra equations are prey-predator equations
Sequence of states